Properties

Label 2.37_607.7t2.1c3
Dimension 2
Group $D_{7}$
Conductor $ 37 \cdot 607 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{7}$
Conductor:$22459= 37 \cdot 607 $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} - 26 x^{5} - 64 x^{4} - 170 x^{3} - 222 x^{2} - 41 x - 331 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{7}$
Parity: Odd
Determinant: 1.37_607.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 5 + \left(11 a + 1\right)\cdot 13 + \left(a + 10\right)\cdot 13^{2} + \left(6 a + 2\right)\cdot 13^{3} + 9 a\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 12 + \left(7 a + 6\right)\cdot 13 + \left(10 a + 6\right)\cdot 13^{2} + \left(2 a + 12\right)\cdot 13^{3} + \left(2 a + 6\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 9 + \left(a + 8\right)\cdot 13 + 11 a\cdot 13^{2} + \left(6 a + 7\right)\cdot 13^{3} + \left(3 a + 3\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 4 + \left(5 a + 10\right)\cdot 13 + \left(10 a + 12\right)\cdot 13^{2} + \left(7 a + 1\right)\cdot 13^{3} + \left(10 a + 7\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 + 7\cdot 13 + 7\cdot 13^{2} + 10\cdot 13^{3} + 4\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 1 + \left(5 a + 12\right)\cdot 13 + \left(2 a + 9\right)\cdot 13^{2} + \left(10 a + 4\right)\cdot 13^{3} + \left(10 a + 6\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 2 a + 2 + \left(7 a + 5\right)\cdot 13 + \left(2 a + 4\right)\cdot 13^{2} + \left(5 a + 12\right)\cdot 13^{3} + \left(2 a + 9\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,3)(2,6)(4,7)$
$(2,3)(4,6)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$2$
$7$$2$$(1,3)(2,6)(4,7)$$0$
$2$$7$$(1,2,4,5,7,6,3)$$\zeta_{7}^{5} + \zeta_{7}^{2}$
$2$$7$$(1,4,7,3,2,5,6)$$\zeta_{7}^{4} + \zeta_{7}^{3}$
$2$$7$$(1,5,3,4,6,2,7)$$-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$
The blue line marks the conjugacy class containing complex conjugation.