Properties

Label 2.37_59.24t22.4c1
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 37 \cdot 59 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$2183= 37 \cdot 59 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{6} - 4 x^{5} - 8 x^{4} - 34 x^{3} + 28 x^{2} - 27 x + 28 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.37_59.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 19 + 64\cdot 79 + 50\cdot 79^{2} + 37\cdot 79^{3} + 77\cdot 79^{4} + 58\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 21 a + 8 + \left(74 a + 74\right)\cdot 79 + \left(11 a + 33\right)\cdot 79^{2} + \left(3 a + 25\right)\cdot 79^{3} + \left(20 a + 18\right)\cdot 79^{4} + \left(20 a + 33\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 47 a + 35 + \left(56 a + 34\right)\cdot 79 + \left(69 a + 10\right)\cdot 79^{2} + \left(40 a + 25\right)\cdot 79^{3} + \left(a + 55\right)\cdot 79^{4} + \left(78 a + 18\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 77 + 17\cdot 79 + 57\cdot 79^{2} + 61\cdot 79^{3} + 43\cdot 79^{4} + 77\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 57 a + 45 + 44\cdot 79 + \left(51 a + 19\right)\cdot 79^{2} + \left(43 a + 1\right)\cdot 79^{3} + \left(7 a + 53\right)\cdot 79^{4} + \left(49 a + 57\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 58 a + 29 + \left(4 a + 48\right)\cdot 79 + \left(67 a + 50\right)\cdot 79^{2} + \left(75 a + 16\right)\cdot 79^{3} + \left(58 a + 35\right)\cdot 79^{4} + \left(58 a + 33\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 22 a + 23 + \left(78 a + 67\right)\cdot 79 + \left(27 a + 69\right)\cdot 79^{2} + \left(35 a + 72\right)\cdot 79^{3} + \left(71 a + 16\right)\cdot 79^{4} + \left(29 a + 20\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 32 a + 3 + \left(22 a + 44\right)\cdot 79 + \left(9 a + 23\right)\cdot 79^{2} + \left(38 a + 75\right)\cdot 79^{3} + \left(77 a + 15\right)\cdot 79^{4} + 16\cdot 79^{5} +O\left(79^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,8)(3,6)(5,7)$
$(1,3,4,6)(2,5,8,7)$
$(2,3,7)(5,8,6)$
$(1,2,4,8)(3,7,6,5)$
$(2,6)(3,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,8)(3,6)(5,7)$$-2$
$12$$2$$(2,6)(3,8)(5,7)$$0$
$8$$3$$(1,3,5)(4,6,7)$$-1$
$6$$4$$(1,3,4,6)(2,5,8,7)$$0$
$8$$6$$(1,7,3,4,5,6)(2,8)$$1$
$6$$8$$(1,3,7,8,4,6,5,2)$$-\zeta_{8}^{3} - \zeta_{8}$
$6$$8$$(1,6,7,2,4,3,5,8)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.