Properties

Label 2.37_59.24t22.2c1
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 37 \cdot 59 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$2183= 37 \cdot 59 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 2 x^{6} - 9 x^{5} - 31 x^{4} - 52 x^{3} - 47 x^{2} - 58 x - 28 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.37_59.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 43 + \left(63 a + 71\right)\cdot 79 + \left(a + 44\right)\cdot 79^{2} + \left(37 a + 76\right)\cdot 79^{3} + \left(12 a + 49\right)\cdot 79^{4} + \left(2 a + 11\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 24 + 71\cdot 79 + 67\cdot 79^{2} + 63\cdot 79^{3} + 25\cdot 79^{4} + 44\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 51 + \left(7 a + 30\right)\cdot 79 + \left(28 a + 13\right)\cdot 79^{2} + \left(a + 7\right)\cdot 79^{3} + \left(62 a + 40\right)\cdot 79^{4} + \left(2 a + 7\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 40 a + 56 + \left(48 a + 36\right)\cdot 79 + \left(64 a + 30\right)\cdot 79^{2} + \left(66 a + 43\right)\cdot 79^{3} + \left(37 a + 55\right)\cdot 79^{4} + \left(59 a + 42\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 75 a + 47 + \left(15 a + 51\right)\cdot 79 + \left(77 a + 62\right)\cdot 79^{2} + \left(41 a + 32\right)\cdot 79^{3} + \left(66 a + 25\right)\cdot 79^{4} + \left(76 a + 1\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 15 + 63\cdot 79 + 15\cdot 79^{2} + 66\cdot 79^{3} + 70\cdot 79^{4} + 37\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 66 a + 64 + \left(71 a + 24\right)\cdot 79 + \left(50 a + 34\right)\cdot 79^{2} + \left(77 a + 59\right)\cdot 79^{3} + \left(16 a + 21\right)\cdot 79^{4} + \left(76 a + 27\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 39 a + 17 + \left(30 a + 45\right)\cdot 79 + \left(14 a + 46\right)\cdot 79^{2} + \left(12 a + 45\right)\cdot 79^{3} + \left(41 a + 26\right)\cdot 79^{4} + \left(19 a + 64\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3)(6,7,8)$
$(1,8)(2,6)(3,7)(4,5)$
$(1,2,8,6)(3,4,7,5)$
$(1,8)(2,7)(3,6)$
$(1,3,8,7)(2,5,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,6)(3,7)(4,5)$$-2$
$12$$2$$(1,8)(2,7)(3,6)$$0$
$8$$3$$(1,5,6)(2,8,4)$$-1$
$6$$4$$(1,3,8,7)(2,5,6,4)$$0$
$8$$6$$(1,2,5,8,6,4)(3,7)$$1$
$6$$8$$(1,7,5,6,8,3,4,2)$$-\zeta_{8}^{3} - \zeta_{8}$
$6$$8$$(1,3,5,2,8,7,4,6)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.