Properties

Label 2.37_53.4t3.3
Dimension 2
Group $D_4$
Conductor $ 37 \cdot 53 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1961= 37 \cdot 53 $
Artin number field: Splitting field of $f= x^{8} + 4 x^{6} - 45 x^{5} + 538 x^{4} - 90 x^{3} + 1084 x^{2} - 249 x + 693 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 149 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 18\cdot 149 + 138\cdot 149^{2} + 32\cdot 149^{3} +O\left(149^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 + 52\cdot 149 + 27\cdot 149^{2} + 126\cdot 149^{3} + 57\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 57 + 68\cdot 149 + 136\cdot 149^{2} + 122\cdot 149^{3} + 7\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 61 + 10\cdot 149 + 145\cdot 149^{2} + 15\cdot 149^{3} + 83\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 62 + 94\cdot 149 + 99\cdot 149^{2} + 140\cdot 149^{3} + 20\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 101 + 77\cdot 149 + 51\cdot 149^{2} + 110\cdot 149^{3} + 31\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 140 + 107\cdot 149 + 45\cdot 149^{2} + 111\cdot 149^{3} + 11\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 144 + 17\cdot 149 + 101\cdot 149^{2} + 84\cdot 149^{3} + 84\cdot 149^{4} +O\left(149^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,2,4)(5,6,7,8)$
$(1,5)(2,7)(3,8)(4,6)$
$(1,2)(3,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)(5,7)(6,8)$ $-2$
$2$ $2$ $(1,5)(2,7)(3,8)(4,6)$ $0$
$2$ $2$ $(1,8)(2,6)(3,7)(4,5)$ $0$
$2$ $4$ $(1,3,2,4)(5,6,7,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.