Properties

Label 2.37_41.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 37 \cdot 41 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1517= 37 \cdot 41 $
Artin number field: Splitting field of $f= x^{8} + x^{6} - 4 x^{5} - 218 x^{4} - 2 x^{3} + 843 x^{2} - 322 x + 6101 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.37_41.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 83 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 20\cdot 83 + 65\cdot 83^{2} + 35\cdot 83^{3} + 44\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 26 + 15\cdot 83 + 16\cdot 83^{2} + 10\cdot 83^{3} + 68\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 46 + 50\cdot 83 + 66\cdot 83^{2} + 20\cdot 83^{3} + 82\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 49 + 19\cdot 83 + 76\cdot 83^{2} + 7\cdot 83^{3} + 9\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 66 + 47\cdot 83 + 50\cdot 83^{2} + 80\cdot 83^{3} + 72\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 71 + 82\cdot 83 + 33\cdot 83^{2} + 39\cdot 83^{3} + 63\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 74 + 40\cdot 83 + 82\cdot 83^{2} + 15\cdot 83^{3} +O\left(83^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 80 + 54\cdot 83 + 23\cdot 83^{2} + 38\cdot 83^{3} + 74\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,8)(4,5)(6,7)$
$(1,2,6,5)(3,4,7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,7)(4,8)$$-2$
$2$$2$$(1,3)(2,8)(4,5)(6,7)$$0$
$2$$2$$(1,8)(2,7)(3,5)(4,6)$$0$
$2$$4$$(1,2,6,5)(3,4,7,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.