Properties

Label 2.37_41.4t3.1
Dimension 2
Group $D_{4}$
Conductor $ 37 \cdot 41 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$1517= 37 \cdot 41 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 3 x^{2} + 14 x + 32 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 83 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 24 + 35\cdot 83 + 22\cdot 83^{2} + 23\cdot 83^{3} + 45\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 38 + 42\cdot 83 + 78\cdot 83^{2} + 63\cdot 83^{3} + 46\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 41 + 44\cdot 83^{2} + 40\cdot 83^{3} + 66\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 64 + 4\cdot 83 + 21\cdot 83^{2} + 38\cdot 83^{3} + 7\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,3)$ $0$
$2$ $4$ $(1,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.