Properties

Label 2.37_233.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 37 \cdot 233 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$8621= 37 \cdot 233 $
Artin number field: Splitting field of $f= x^{8} + 111 x^{6} + 3472 x^{4} + 24975 x^{2} + 50625 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.37_233.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3 + 7\cdot 71 + 39\cdot 71^{3} + 29\cdot 71^{4} + 7\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 5 + 12\cdot 71 + 19\cdot 71^{2} + 32\cdot 71^{3} + 3\cdot 71^{4} + 64\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 9 + 68\cdot 71 + 35\cdot 71^{2} + 4\cdot 71^{3} + 16\cdot 71^{4} + 6\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 22 + 7\cdot 71 + 9\cdot 71^{2} + 27\cdot 71^{3} + 64\cdot 71^{4} + 46\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 49 + 63\cdot 71 + 61\cdot 71^{2} + 43\cdot 71^{3} + 6\cdot 71^{4} + 24\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 62 + 2\cdot 71 + 35\cdot 71^{2} + 66\cdot 71^{3} + 54\cdot 71^{4} + 64\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 66 + 58\cdot 71 + 51\cdot 71^{2} + 38\cdot 71^{3} + 67\cdot 71^{4} + 6\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 68 + 63\cdot 71 + 70\cdot 71^{2} + 31\cdot 71^{3} + 41\cdot 71^{4} + 63\cdot 71^{5} +O\left(71^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$4$$(1,5,8,4)(2,3,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.