Properties

Label 2.3776.6t3.d.a
Dimension $2$
Group $D_{6}$
Conductor $3776$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{6}$
Conductor: \(3776\)\(\medspace = 2^{6} \cdot 59 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.2.105154048.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Determinant: 1.59.2t1.a.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.59.1

Defining polynomial

$f(x)$$=$ \( x^{6} + 16x^{4} + 64x^{2} - 472 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{2} + 12x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 2 + 4\cdot 13 + 10\cdot 13^{2} + 9\cdot 13^{3} + 4\cdot 13^{4} + 2\cdot 13^{5} + 5\cdot 13^{7} + 7\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 7 a + 4 + 10 a\cdot 13 + \left(2 a + 9\right)\cdot 13^{2} + \left(4 a + 10\right)\cdot 13^{3} + \left(4 a + 8\right)\cdot 13^{4} + \left(9 a + 11\right)\cdot 13^{5} + \left(5 a + 1\right)\cdot 13^{6} + \left(9 a + 7\right)\cdot 13^{7} + \left(11 a + 5\right)\cdot 13^{8} + \left(6 a + 12\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 6 a + 11 + \left(2 a + 3\right)\cdot 13 + \left(10 a + 1\right)\cdot 13^{2} + \left(8 a + 12\right)\cdot 13^{3} + \left(8 a + 8\right)\cdot 13^{4} + \left(3 a + 3\right)\cdot 13^{5} + \left(7 a + 11\right)\cdot 13^{6} + \left(3 a + 10\right)\cdot 13^{7} + \left(a + 7\right)\cdot 13^{8} + \left(6 a + 7\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 11 + 8\cdot 13 + 2\cdot 13^{2} + 3\cdot 13^{3} + 8\cdot 13^{4} + 10\cdot 13^{5} + 12\cdot 13^{6} + 7\cdot 13^{7} + 12\cdot 13^{8} + 5\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 6 a + 9 + \left(2 a + 12\right)\cdot 13 + \left(10 a + 3\right)\cdot 13^{2} + \left(8 a + 2\right)\cdot 13^{3} + \left(8 a + 4\right)\cdot 13^{4} + \left(3 a + 1\right)\cdot 13^{5} + \left(7 a + 11\right)\cdot 13^{6} + \left(3 a + 5\right)\cdot 13^{7} + \left(a + 7\right)\cdot 13^{8} + 6 a\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 7 a + 2 + \left(10 a + 9\right)\cdot 13 + \left(2 a + 11\right)\cdot 13^{2} + 4 a\cdot 13^{3} + \left(4 a + 4\right)\cdot 13^{4} + \left(9 a + 9\right)\cdot 13^{5} + \left(5 a + 1\right)\cdot 13^{6} + \left(9 a + 2\right)\cdot 13^{7} + \left(11 a + 5\right)\cdot 13^{8} + \left(6 a + 5\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6,4,5,3)$
$(2,3)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,5)(3,6)$$-2$
$3$$2$$(2,3)(5,6)$$0$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$2$$3$$(1,6,5)(2,4,3)$$-1$
$2$$6$$(1,2,6,4,5,3)$$1$

The blue line marks the conjugacy class containing complex conjugation.