Properties

Label 2.3671.9t3.a.c
Dimension $2$
Group $D_{9}$
Conductor $3671$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{9}$
Conductor: \(3671\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 9.1.181609071490081.1
Galois orbit size: $3$
Smallest permutation container: $D_{9}$
Parity: odd
Determinant: 1.3671.2t1.a.a
Projective image: $D_9$
Projective stem field: Galois closure of 9.1.181609071490081.1

Defining polynomial

$f(x)$$=$ \( x^{9} - 3x^{8} + 5x^{7} - 16x^{6} + 23x^{5} - 63x^{4} + 54x^{3} - 63x^{2} + 102x - 113 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: \( x^{3} + 2x + 9 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 7 a^{2} + 2 a + 6 + \left(10 a^{2} + 5 a + 10\right)\cdot 11 + \left(7 a^{2} + 6 a + 6\right)\cdot 11^{2} + \left(a^{2} + 10 a + 9\right)\cdot 11^{3} + \left(a + 3\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 2 a^{2} + 3 a + 3 + \left(8 a^{2} + 3 a + 7\right)\cdot 11 + \left(9 a^{2} + 6 a + 5\right)\cdot 11^{2} + \left(2 a^{2} + 7\right)\cdot 11^{3} + \left(9 a^{2} + 9 a + 8\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 5 a^{2} + 6 a + 7 + \left(6 a^{2} + 10 a + 8\right)\cdot 11 + 4 a\cdot 11^{2} + \left(5 a^{2} + 10 a + 3\right)\cdot 11^{3} + \left(7 a^{2} + 10 a + 6\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 9 a^{2} + 7 a + 5 + \left(4 a^{2} + 3 a + 6\right)\cdot 11 + \left(3 a^{2} + 4 a + 4\right)\cdot 11^{2} + \left(3 a^{2} + 2 a + 4\right)\cdot 11^{3} + \left(5 a^{2} + 6 a + 3\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 10 a^{2} + 10 + \left(8 a^{2} + 3 a\right)\cdot 11 + \left(8 a^{2} + 9 a + 8\right)\cdot 11^{2} + \left(10 a^{2} + 10\right)\cdot 11^{3} + \left(3 a^{2} + 7 a + 8\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 2 a + 4 + \left(6 a^{2} + 6 a + 4\right)\cdot 11 + \left(4 a^{2} + 9 a + 2\right)\cdot 11^{2} + \left(7 a^{2} + 8 a + 6\right)\cdot 11^{3} + \left(5 a^{2} + a + 7\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 10 a^{2} + 3 a + 10 + \left(4 a^{2} + 6 a + 2\right)\cdot 11 + \left(2 a^{2} + 10 a + 3\right)\cdot 11^{2} + \left(4 a^{2} + 9\right)\cdot 11^{3} + \left(3 a^{2} + 9 a\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 2 a^{2} + 2 a + 3 + a\cdot 11 + \left(3 a^{2} + 8 a + 4\right)\cdot 11^{2} + 10 a\cdot 11^{3} + 2 a\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 10 a^{2} + 8 a + 10 + \left(4 a^{2} + 4 a + 2\right)\cdot 11 + \left(3 a^{2} + 6 a + 8\right)\cdot 11^{2} + \left(8 a^{2} + 9 a + 3\right)\cdot 11^{3} + \left(8 a^{2} + 5 a + 4\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,2,8,3,5,6,7,9,4)$
$(1,3,7)(2,5,9)(4,8,6)$
$(1,3)(2,8)(4,5)(6,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,3)(2,8)(4,5)(6,9)$$0$
$2$$3$$(1,3,7)(2,5,9)(4,8,6)$$-1$
$2$$9$$(1,2,8,3,5,6,7,9,4)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$$9$$(1,8,5,7,4,2,3,6,9)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$$9$$(1,5,4,3,9,8,7,2,6)$$\zeta_{9}^{5} + \zeta_{9}^{4}$

The blue line marks the conjugacy class containing complex conjugation.