Basic invariants
Dimension: | $2$ |
Group: | $C_3\times (C_3 : C_4)$ |
Conductor: | \(36703\)\(\medspace = 17^{2} \cdot 127 \) |
Artin number field: | Galois closure of 12.12.30850000558264402577.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_3\times (C_3 : C_4)$ |
Parity: | even |
Projective image: | $S_3$ |
Projective field: | Galois closure of 3.3.274193.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$:
\( x^{4} + 3x^{2} + 40x + 2 \)
Roots:
$r_{ 1 }$ | $=$ | \( 56 a^{3} + 7 a^{2} + 17 a + 5 + \left(36 a^{3} + 18 a^{2} + 49 a + 55\right)\cdot 61 + \left(6 a^{3} + 50 a^{2} + 14 a + 35\right)\cdot 61^{2} + \left(35 a^{3} + 50 a^{2} + 48 a + 22\right)\cdot 61^{3} + \left(10 a^{3} + 52 a^{2} + 13 a + 18\right)\cdot 61^{4} + \left(47 a^{3} + 13 a^{2} + 21 a + 13\right)\cdot 61^{5} + \left(46 a^{3} + 58 a^{2} + 27 a + 33\right)\cdot 61^{6} +O(61^{7})\) |
$r_{ 2 }$ | $=$ | \( 48 a^{3} + 26 a^{2} + 58 a + 51 + \left(46 a^{3} + 13 a^{2} + 58 a + 27\right)\cdot 61 + \left(16 a^{3} + 15 a^{2} + a + 6\right)\cdot 61^{2} + \left(52 a^{3} + 44 a^{2} + 24 a + 29\right)\cdot 61^{3} + \left(50 a^{3} + 13 a^{2} + 39 a + 7\right)\cdot 61^{4} + \left(10 a^{3} + 9 a^{2} + 48 a + 24\right)\cdot 61^{5} + \left(28 a^{3} + 15 a^{2} + 35 a + 20\right)\cdot 61^{6} +O(61^{7})\) |
$r_{ 3 }$ | $=$ | \( 47 a^{3} + 36 a^{2} + 25 a + 18 + \left(49 a^{3} + 10 a^{2} + 26 a + 4\right)\cdot 61 + \left(15 a^{3} + 39 a^{2} + 11 a + 55\right)\cdot 61^{2} + \left(27 a^{3} + 48 a^{2} + 56 a + 49\right)\cdot 61^{3} + \left(4 a^{3} + 20 a^{2} + 11 a + 22\right)\cdot 61^{4} + \left(11 a^{3} + 10 a^{2} + 35 a + 26\right)\cdot 61^{5} + \left(39 a^{3} + 3 a^{2} + 58 a + 23\right)\cdot 61^{6} +O(61^{7})\) |
$r_{ 4 }$ | $=$ | \( 22 a^{3} + a^{2} + 56 a + 39 + \left(54 a^{3} + 24 a^{2} + 11 a + 9\right)\cdot 61 + \left(55 a^{3} + 34 a^{2} + 33 a + 30\right)\cdot 61^{2} + \left(52 a^{3} + 51 a^{2} + 40 a\right)\cdot 61^{3} + \left(2 a^{2} + 10 a + 41\right)\cdot 61^{4} + \left(16 a^{3} + 10 a^{2} + 34 a + 21\right)\cdot 61^{5} + \left(13 a^{3} + 10 a^{2} + 5 a + 49\right)\cdot 61^{6} +O(61^{7})\) |
$r_{ 5 }$ | $=$ | \( 13 a^{3} + 30 a^{2} + 3 a + \left(6 a^{3} + 16 a^{2} + 50 a + 16\right)\cdot 61 + \left(4 a^{3} + 23 a^{2} + 29 a + 42\right)\cdot 61^{2} + \left(45 a^{3} + 49 a^{2} + 48 a + 44\right)\cdot 61^{3} + \left(55 a^{3} + 31 a^{2} + 8 a + 60\right)\cdot 61^{4} + \left(40 a^{3} + 6 a^{2} + 48 a + 27\right)\cdot 61^{5} + \left(5 a^{3} + 16 a^{2} + 36 a + 48\right)\cdot 61^{6} +O(61^{7})\) |
$r_{ 6 }$ | $=$ | \( 21 a^{3} + 11 a^{2} + 23 a + 42 + \left(57 a^{3} + 21 a^{2} + 40 a + 20\right)\cdot 61 + \left(54 a^{3} + 58 a^{2} + 42 a + 57\right)\cdot 61^{2} + \left(27 a^{3} + 55 a^{2} + 11 a + 16\right)\cdot 61^{3} + \left(15 a^{3} + 9 a^{2} + 44 a + 7\right)\cdot 61^{4} + \left(16 a^{3} + 11 a^{2} + 20 a + 37\right)\cdot 61^{5} + \left(24 a^{3} + 59 a^{2} + 28 a + 60\right)\cdot 61^{6} +O(61^{7})\) |
$r_{ 7 }$ | $=$ | \( 41 a^{3} + 60 a^{2} + 12 a + 57 + \left(43 a^{3} + 33 a^{2} + 6 a + 8\right)\cdot 61 + \left(52 a^{3} + 43 a^{2} + 29 a + 40\right)\cdot 61^{2} + \left(45 a^{3} + 2 a^{2} + 24 a + 20\right)\cdot 61^{3} + \left(59 a^{3} + 3 a^{2} + 4 a + 8\right)\cdot 61^{4} + \left(57 a^{3} + 38 a^{2} + 3 a + 11\right)\cdot 61^{5} + \left(25 a^{3} + 7 a^{2} + 60\right)\cdot 61^{6} +O(61^{7})\) |
$r_{ 8 }$ | $=$ | \( 42 a^{3} + 50 a^{2} + 45 a + 29 + \left(40 a^{3} + 36 a^{2} + 38 a + 32\right)\cdot 61 + \left(53 a^{3} + 19 a^{2} + 19 a + 52\right)\cdot 61^{2} + \left(9 a^{3} + 59 a^{2} + 53 a + 60\right)\cdot 61^{3} + \left(45 a^{3} + 56 a^{2} + 31 a + 53\right)\cdot 61^{4} + \left(57 a^{3} + 36 a^{2} + 16 a + 8\right)\cdot 61^{5} + \left(14 a^{3} + 19 a^{2} + 38 a + 57\right)\cdot 61^{6} +O(61^{7})\) |
$r_{ 9 }$ | $=$ | \( 50 a^{3} + 31 a^{2} + 4 a + 44 + \left(30 a^{3} + 41 a^{2} + 29 a + 59\right)\cdot 61 + \left(43 a^{3} + 54 a^{2} + 32 a + 20\right)\cdot 61^{2} + \left(53 a^{3} + 4 a^{2} + 16 a + 54\right)\cdot 61^{3} + \left(4 a^{3} + 35 a^{2} + 6 a + 3\right)\cdot 61^{4} + \left(33 a^{3} + 41 a^{2} + 50 a + 59\right)\cdot 61^{5} + \left(33 a^{3} + a^{2} + 29 a + 8\right)\cdot 61^{6} +O(61^{7})\) |
$r_{ 10 }$ | $=$ | \( 3 a^{3} + 54 a^{2} + 37 a + 41 + \left(48 a^{3} + 45 a^{2} + 54 a + 3\right)\cdot 61 + \left(6 a^{3} + 54 a^{2} + 44 a + 48\right)\cdot 61^{2} + \left(49 a^{3} + 16 a^{2} + 8 a + 25\right)\cdot 61^{3} + \left(50 a^{3} + 2 a^{2} + 32 a + 51\right)\cdot 61^{4} + \left(60 a^{2} + 2 a + 3\right)\cdot 61^{5} + \left(36 a^{3} + 45 a^{2} + 28 a + 58\right)\cdot 61^{6} +O(61^{7})\) |
$r_{ 11 }$ | $=$ | \( 11 a^{3} + 35 a^{2} + 57 a + 22 + \left(38 a^{3} + 50 a^{2} + 44 a + 8\right)\cdot 61 + \left(57 a^{3} + 28 a^{2} + 57 a + 2\right)\cdot 61^{2} + \left(31 a^{3} + 23 a^{2} + 32 a + 59\right)\cdot 61^{3} + \left(10 a^{3} + 41 a^{2} + 6 a + 58\right)\cdot 61^{4} + \left(37 a^{3} + 3 a^{2} + 36 a + 12\right)\cdot 61^{5} + \left(54 a^{3} + 28 a^{2} + 19 a + 9\right)\cdot 61^{6} +O(61^{7})\) |
$r_{ 12 }$ | $=$ | \( 12 a^{3} + 25 a^{2} + 29 a + 19 + \left(35 a^{3} + 53 a^{2} + 16 a + 58\right)\cdot 61 + \left(58 a^{3} + 4 a^{2} + 48 a + 35\right)\cdot 61^{2} + \left(56 a^{3} + 19 a^{2} + 42\right)\cdot 61^{3} + \left(56 a^{3} + 34 a^{2} + 34 a + 31\right)\cdot 61^{4} + \left(36 a^{3} + 2 a^{2} + 49 a + 58\right)\cdot 61^{5} + \left(43 a^{3} + 40 a^{2} + 57 a + 58\right)\cdot 61^{6} +O(61^{7})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 12 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 12 }$ | Character values | |
$c1$ | $c2$ | |||
$1$ | $1$ | $()$ | $2$ | $2$ |
$1$ | $2$ | $(1,9)(2,8)(3,7)(4,12)(5,10)(6,11)$ | $-2$ | $-2$ |
$1$ | $3$ | $(1,3,2)(4,6,5)(7,8,9)(10,12,11)$ | $-2 \zeta_{3} - 2$ | $2 \zeta_{3}$ |
$1$ | $3$ | $(1,2,3)(4,5,6)(7,9,8)(10,11,12)$ | $2 \zeta_{3}$ | $-2 \zeta_{3} - 2$ |
$2$ | $3$ | $(1,2,3)(4,6,5)(7,9,8)(10,12,11)$ | $-1$ | $-1$ |
$2$ | $3$ | $(4,5,6)(10,11,12)$ | $\zeta_{3} + 1$ | $-\zeta_{3}$ |
$2$ | $3$ | $(4,6,5)(10,12,11)$ | $-\zeta_{3}$ | $\zeta_{3} + 1$ |
$3$ | $4$ | $(1,4,9,12)(2,5,8,10)(3,6,7,11)$ | $0$ | $0$ |
$3$ | $4$ | $(1,12,9,4)(2,10,8,5)(3,11,7,6)$ | $0$ | $0$ |
$1$ | $6$ | $(1,8,3,9,2,7)(4,10,6,12,5,11)$ | $-2 \zeta_{3}$ | $2 \zeta_{3} + 2$ |
$1$ | $6$ | $(1,7,2,9,3,8)(4,11,5,12,6,10)$ | $2 \zeta_{3} + 2$ | $-2 \zeta_{3}$ |
$2$ | $6$ | $(1,7,2,9,3,8)(4,10,6,12,5,11)$ | $1$ | $1$ |
$2$ | $6$ | $(1,9)(2,8)(3,7)(4,10,6,12,5,11)$ | $-\zeta_{3} - 1$ | $\zeta_{3}$ |
$2$ | $6$ | $(1,9)(2,8)(3,7)(4,11,5,12,6,10)$ | $\zeta_{3}$ | $-\zeta_{3} - 1$ |
$3$ | $12$ | $(1,11,8,4,3,10,9,6,2,12,7,5)$ | $0$ | $0$ |
$3$ | $12$ | $(1,10,7,4,2,11,9,5,3,12,8,6)$ | $0$ | $0$ |
$3$ | $12$ | $(1,6,8,12,3,5,9,11,2,4,7,10)$ | $0$ | $0$ |
$3$ | $12$ | $(1,5,7,12,2,6,9,10,3,4,8,11)$ | $0$ | $0$ |