Properties

Label 2.367.9t3.a.a
Dimension $2$
Group $D_{9}$
Conductor $367$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{9}$
Conductor: \(367\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 9.1.18141126721.1
Galois orbit size: $3$
Smallest permutation container: $D_{9}$
Parity: odd
Determinant: 1.367.2t1.a.a
Projective image: $D_9$
Projective stem field: Galois closure of 9.1.18141126721.1

Defining polynomial

$f(x)$$=$ \( x^{9} - x^{8} - 3x^{7} - x^{6} + 6x^{5} - x^{4} + 6x^{3} - 7x^{2} + 2x - 3 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{3} + 2x + 11 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 11 a^{2} + 5 a + 5 + \left(6 a^{2} + 3\right)\cdot 13 + \left(5 a^{2} + 9 a + 9\right)\cdot 13^{2} + \left(9 a^{2} + 9 a + 9\right)\cdot 13^{3} + \left(6 a^{2} + 10 a + 12\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 12 a^{2} + 5 a + 5 + \left(8 a + 4\right)\cdot 13 + \left(12 a^{2} + 8 a + 1\right)\cdot 13^{2} + \left(6 a^{2} + 3 a + 1\right)\cdot 13^{3} + \left(11 a^{2} + 11\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 2 a^{2} + 11 a + 6 + \left(4 a^{2} + 10 a + 8\right)\cdot 13 + \left(2 a^{2} + 4 a\right)\cdot 13^{2} + \left(7 a^{2} + 8 a + 11\right)\cdot 13^{3} + \left(a^{2} + 6 a + 5\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 7 a^{2} + 10 a + 7 + \left(a^{2} + 10 a + 9\right)\cdot 13 + \left(a^{2} + 3 a + 12\right)\cdot 13^{2} + \left(9 a^{2} + 8 a + 3\right)\cdot 13^{3} + \left(7 a^{2} + 6 a + 10\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 11 a^{2} + 7 a + 1 + \left(4 a^{2} + 9 a + 9\right)\cdot 13 + \left(11 a^{2} + 5 a + 10\right)\cdot 13^{2} + \left(6 a^{2} + 8 a + 2\right)\cdot 13^{3} + \left(11 a^{2} + 3 a + 7\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 3 a^{2} + 7 a + 12 + \left(12 a^{2} + 6 a + 5\right)\cdot 13 + \left(3 a^{2} + 9 a + 9\right)\cdot 13^{2} + \left(10 a^{2} + 9 a + 11\right)\cdot 13^{3} + \left(11 a^{2} + 9 a + 11\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 12 a^{2} + 12 a + 11 + \left(8 a^{2} + 9 a + 5\right)\cdot 13 + \left(10 a^{2} + 10 a + 5\right)\cdot 13^{2} + \left(8 a^{2} + 7 a + 5\right)\cdot 13^{3} + \left(2 a^{2} + 12 a + 8\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 10 a + 12 + \left(2 a^{2} + a + 9\right)\cdot 13 + \left(5 a^{2} + 12 a + 8\right)\cdot 13^{2} + \left(9 a^{2} + 7 a + 9\right)\cdot 13^{3} + \left(4 a^{2} + 8 a + 5\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 7 a^{2} + 11 a + 7 + \left(10 a^{2} + 6 a + 8\right)\cdot 13 + \left(12 a^{2} + 6\right)\cdot 13^{2} + \left(9 a^{2} + a + 9\right)\cdot 13^{3} + \left(6 a^{2} + 6 a + 4\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3)(2,5)(4,6)(7,9)$
$(1,7,9,3,6,2,8,5,4)$
$(1,3,8)(2,4,9)(5,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,3)(2,5)(4,6)(7,9)$$0$
$2$$3$$(1,3,8)(2,4,9)(5,7,6)$$-1$
$2$$9$$(1,7,9,3,6,2,8,5,4)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$$9$$(1,9,6,8,4,7,3,2,5)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,6,4,3,5,9,8,7,2)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$

The blue line marks the conjugacy class containing complex conjugation.