Properties

Label 2.367.9t3.1
Dimension 2
Group $D_{9}$
Conductor $ 367 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$367 $
Artin number field: Splitting field of $f= x^{9} - x^{8} - 3 x^{7} - x^{6} + 6 x^{5} - x^{4} + 6 x^{3} - 7 x^{2} + 2 x - 3 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 11 a^{2} + 5 a + 5 + \left(6 a^{2} + 3\right)\cdot 13 + \left(5 a^{2} + 9 a + 9\right)\cdot 13^{2} + \left(9 a^{2} + 9 a + 9\right)\cdot 13^{3} + \left(6 a^{2} + 10 a + 12\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 a^{2} + 5 a + 5 + \left(8 a + 4\right)\cdot 13 + \left(12 a^{2} + 8 a + 1\right)\cdot 13^{2} + \left(6 a^{2} + 3 a + 1\right)\cdot 13^{3} + \left(11 a^{2} + 11\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a^{2} + 11 a + 6 + \left(4 a^{2} + 10 a + 8\right)\cdot 13 + \left(2 a^{2} + 4 a\right)\cdot 13^{2} + \left(7 a^{2} + 8 a + 11\right)\cdot 13^{3} + \left(a^{2} + 6 a + 5\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a^{2} + 10 a + 7 + \left(a^{2} + 10 a + 9\right)\cdot 13 + \left(a^{2} + 3 a + 12\right)\cdot 13^{2} + \left(9 a^{2} + 8 a + 3\right)\cdot 13^{3} + \left(7 a^{2} + 6 a + 10\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 11 a^{2} + 7 a + 1 + \left(4 a^{2} + 9 a + 9\right)\cdot 13 + \left(11 a^{2} + 5 a + 10\right)\cdot 13^{2} + \left(6 a^{2} + 8 a + 2\right)\cdot 13^{3} + \left(11 a^{2} + 3 a + 7\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 3 a^{2} + 7 a + 12 + \left(12 a^{2} + 6 a + 5\right)\cdot 13 + \left(3 a^{2} + 9 a + 9\right)\cdot 13^{2} + \left(10 a^{2} + 9 a + 11\right)\cdot 13^{3} + \left(11 a^{2} + 9 a + 11\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 12 a^{2} + 12 a + 11 + \left(8 a^{2} + 9 a + 5\right)\cdot 13 + \left(10 a^{2} + 10 a + 5\right)\cdot 13^{2} + \left(8 a^{2} + 7 a + 5\right)\cdot 13^{3} + \left(2 a^{2} + 12 a + 8\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 10 a + 12 + \left(2 a^{2} + a + 9\right)\cdot 13 + \left(5 a^{2} + 12 a + 8\right)\cdot 13^{2} + \left(9 a^{2} + 7 a + 9\right)\cdot 13^{3} + \left(4 a^{2} + 8 a + 5\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 7 a^{2} + 11 a + 7 + \left(10 a^{2} + 6 a + 8\right)\cdot 13 + \left(12 a^{2} + 6\right)\cdot 13^{2} + \left(9 a^{2} + a + 9\right)\cdot 13^{3} + \left(6 a^{2} + 6 a + 4\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3)(2,5)(4,6)(7,9)$
$(1,7,9,3,6,2,8,5,4)$
$(1,3,8)(2,4,9)(5,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$ $c3$
$1$ $1$ $()$ $2$ $2$ $2$
$9$ $2$ $(1,3)(2,5)(4,6)(7,9)$ $0$ $0$ $0$
$2$ $3$ $(1,3,8)(2,4,9)(5,7,6)$ $-1$ $-1$ $-1$
$2$ $9$ $(1,7,9,3,6,2,8,5,4)$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ $\zeta_{9}^{5} + \zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$ $9$ $(1,9,6,8,4,7,3,2,5)$ $\zeta_{9}^{5} + \zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$ $9$ $(1,6,4,3,5,9,8,7,2)$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ $\zeta_{9}^{5} + \zeta_{9}^{4}$
The blue line marks the conjugacy class containing complex conjugation.