Properties

Label 2.3571.24t22.1c1
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 3571 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$3571 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{6} + 14 x^{5} - 11 x^{4} + 7 x^{3} - 66 x^{2} + 81 x - 27 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.3571.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 107 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 107 }$: $ x^{2} + 103 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 52 a + 27 + \left(68 a + 75\right)\cdot 107 + \left(11 a + 52\right)\cdot 107^{2} + \left(3 a + 43\right)\cdot 107^{3} + \left(96 a + 53\right)\cdot 107^{4} + \left(33 a + 72\right)\cdot 107^{5} +O\left(107^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 44 a + 105 + \left(25 a + 16\right)\cdot 107 + \left(84 a + 36\right)\cdot 107^{2} + \left(64 a + 31\right)\cdot 107^{3} + \left(96 a + 94\right)\cdot 107^{4} + \left(20 a + 40\right)\cdot 107^{5} +O\left(107^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 20 + 2\cdot 107 + 22\cdot 107^{2} + 42\cdot 107^{3} + 36\cdot 107^{4} + 66\cdot 107^{5} +O\left(107^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 15 + \left(30 a + 56\right)\cdot 107 + \left(8 a + 102\right)\cdot 107^{2} + \left(41 a + 95\right)\cdot 107^{3} + \left(20 a + 84\right)\cdot 107^{4} + \left(75 a + 95\right)\cdot 107^{5} +O\left(107^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 55 a + 21 + \left(38 a + 83\right)\cdot 107 + \left(95 a + 30\right)\cdot 107^{2} + \left(103 a + 44\right)\cdot 107^{3} + \left(10 a + 6\right)\cdot 107^{4} + \left(73 a + 5\right)\cdot 107^{5} +O\left(107^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 63 a + 67 + \left(81 a + 74\right)\cdot 107 + \left(22 a + 26\right)\cdot 107^{2} + \left(42 a + 99\right)\cdot 107^{3} + \left(10 a + 94\right)\cdot 107^{4} + \left(86 a + 27\right)\cdot 107^{5} +O\left(107^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 33 + 55\cdot 107 + 51\cdot 107^{2} + 33\cdot 107^{3} + 39\cdot 107^{4} + 64\cdot 107^{5} +O\left(107^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 102 a + 35 + \left(76 a + 64\right)\cdot 107 + \left(98 a + 105\right)\cdot 107^{2} + \left(65 a + 37\right)\cdot 107^{3} + \left(86 a + 18\right)\cdot 107^{4} + \left(31 a + 55\right)\cdot 107^{5} +O\left(107^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,8)(3,7)(5,6)$
$(2,3,5)(6,7,8)$
$(1,3,4,7)(2,5,6,8)$
$(1,4)(2,6)(3,7)(5,8)$
$(1,5,4,8)(2,7,6,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,6)(3,7)(5,8)$$-2$
$12$$2$$(2,8)(3,7)(5,6)$$0$
$8$$3$$(2,3,5)(6,7,8)$$-1$
$6$$4$$(1,3,4,7)(2,5,6,8)$$0$
$8$$6$$(1,4)(2,7,5,6,3,8)$$1$
$6$$8$$(1,5,3,6,4,8,7,2)$$-\zeta_{8}^{3} - \zeta_{8}$
$6$$8$$(1,8,3,2,4,5,7,6)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.