Properties

Label 2.3536.4t3.m
Dimension $2$
Group $D_{4}$
Conductor $3536$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:\(3536\)\(\medspace = 2^{4} \cdot 13 \cdot 17 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.4.45968.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: even
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{13}, \sqrt{17})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 4 + 32\cdot 43 + 3\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 6 + 18\cdot 43 + 5\cdot 43^{2} + 36\cdot 43^{3} + 30\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 37 + 24\cdot 43 + 37\cdot 43^{2} + 6\cdot 43^{3} + 12\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 39 + 10\cdot 43 + 42\cdot 43^{2} + 42\cdot 43^{3} + 39\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.