Properties

Label 2.351.3t2.b.a
Dimension 2
Group $S_3$
Conductor $ 3^{3} \cdot 13 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3$
Conductor:$351= 3^{3} \cdot 13 $
Artin number field: Splitting field of 3.1.351.1 defined by $f= x^{3} + 3 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3$
Parity: Odd
Determinant: 1.39.2t1.a.a
Projective image: $S_3$
Projective field: Galois closure of 3.1.351.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 11 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 8\cdot 11 + 3\cdot 11^{2} + 10\cdot 11^{3} + 9\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 + 11 + 4\cdot 11^{2} + 10\cdot 11^{3} + 10\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 + 11 + 3\cdot 11^{2} + 11^{3} + 11^{4} +O\left(11^{ 5 }\right)$

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character value
$1$$1$$()$$2$
$3$$2$$(1,2)$$0$
$2$$3$$(1,2,3)$$-1$
The blue line marks the conjugacy class containing complex conjugation.