Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(3332\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 17 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 6.0.44408896.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Determinant: | 1.68.2t1.a.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.3332.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{6} - 9x^{4} - 14x^{3} + 90x^{2} - 112x + 64 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: \( x^{2} + 24x + 2 \)
Roots:
$r_{ 1 }$ | $=$ | \( 14 a + 19 + \left(25 a + 19\right)\cdot 29 + \left(6 a + 3\right)\cdot 29^{2} + \left(2 a + 18\right)\cdot 29^{3} + \left(7 a + 14\right)\cdot 29^{4} + \left(23 a + 15\right)\cdot 29^{5} + \left(16 a + 14\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 2 }$ | $=$ | \( 15 a + 2 + \left(3 a + 17\right)\cdot 29 + \left(22 a + 12\right)\cdot 29^{2} + \left(26 a + 22\right)\cdot 29^{3} + \left(21 a + 18\right)\cdot 29^{4} + \left(5 a + 8\right)\cdot 29^{5} + \left(12 a + 17\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 3 }$ | $=$ | \( 25 + 19\cdot 29 + 16\cdot 29^{3} + 6\cdot 29^{4} + 17\cdot 29^{5} + 10\cdot 29^{6} +O(29^{7})\) |
$r_{ 4 }$ | $=$ | \( 23 + 9\cdot 29^{2} + 23\cdot 29^{3} + 23\cdot 29^{4} + 19\cdot 29^{5} + 21\cdot 29^{6} +O(29^{7})\) |
$r_{ 5 }$ | $=$ | \( 25 a + 19 + \left(19 a + 6\right)\cdot 29 + \left(4 a + 14\right)\cdot 29^{2} + \left(4 a + 24\right)\cdot 29^{3} + \left(4 a + 17\right)\cdot 29^{4} + \left(25 a + 24\right)\cdot 29^{5} + \left(22 a + 24\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 6 }$ | $=$ | \( 4 a + 28 + \left(9 a + 22\right)\cdot 29 + \left(24 a + 17\right)\cdot 29^{2} + \left(24 a + 11\right)\cdot 29^{3} + \left(24 a + 5\right)\cdot 29^{4} + \left(3 a + 1\right)\cdot 29^{5} + \left(6 a + 27\right)\cdot 29^{6} +O(29^{7})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,5)(2,6)(3,4)$ | $-2$ |
$3$ | $2$ | $(1,2)(5,6)$ | $0$ |
$3$ | $2$ | $(1,5)(2,4)(3,6)$ | $0$ |
$2$ | $3$ | $(1,2,3)(4,5,6)$ | $-1$ |
$2$ | $6$ | $(1,4,2,5,3,6)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.