Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(3332\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 17 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 6.2.310862272.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Determinant: | 1.68.2t1.a.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.3332.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{6} + 7x^{4} + 63x^{2} - 7 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \( x^{2} + 18x + 2 \)
Roots:
$r_{ 1 }$ | $=$ | \( 16 a + 2 + \left(12 a + 6\right)\cdot 19 + 7\cdot 19^{2} + \left(2 a + 16\right)\cdot 19^{3} + \left(15 a + 7\right)\cdot 19^{4} + \left(10 a + 3\right)\cdot 19^{5} + \left(2 a + 12\right)\cdot 19^{6} + \left(6 a + 12\right)\cdot 19^{7} +O(19^{8})\) |
$r_{ 2 }$ | $=$ | \( 3 a + 18 + \left(6 a + 2\right)\cdot 19 + \left(18 a + 14\right)\cdot 19^{2} + \left(16 a + 17\right)\cdot 19^{3} + \left(3 a + 1\right)\cdot 19^{4} + \left(8 a + 18\right)\cdot 19^{5} + \left(16 a + 3\right)\cdot 19^{6} + \left(12 a + 16\right)\cdot 19^{7} +O(19^{8})\) |
$r_{ 3 }$ | $=$ | \( 9 + 10\cdot 19 + 9\cdot 19^{2} + 9\cdot 19^{3} + 19^{4} + 5\cdot 19^{5} + 17\cdot 19^{6} + 4\cdot 19^{7} +O(19^{8})\) |
$r_{ 4 }$ | $=$ | \( 3 a + 17 + \left(6 a + 12\right)\cdot 19 + \left(18 a + 11\right)\cdot 19^{2} + \left(16 a + 2\right)\cdot 19^{3} + \left(3 a + 11\right)\cdot 19^{4} + \left(8 a + 15\right)\cdot 19^{5} + \left(16 a + 6\right)\cdot 19^{6} + \left(12 a + 6\right)\cdot 19^{7} +O(19^{8})\) |
$r_{ 5 }$ | $=$ | \( 16 a + 1 + \left(12 a + 16\right)\cdot 19 + 4\cdot 19^{2} + \left(2 a + 1\right)\cdot 19^{3} + \left(15 a + 17\right)\cdot 19^{4} + 10 a\cdot 19^{5} + \left(2 a + 15\right)\cdot 19^{6} + \left(6 a + 2\right)\cdot 19^{7} +O(19^{8})\) |
$r_{ 6 }$ | $=$ | \( 10 + 8\cdot 19 + 9\cdot 19^{2} + 9\cdot 19^{3} + 17\cdot 19^{4} + 13\cdot 19^{5} + 19^{6} + 14\cdot 19^{7} +O(19^{8})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-2$ |
$3$ | $2$ | $(1,2)(4,5)$ | $0$ |
$3$ | $2$ | $(1,4)(2,3)(5,6)$ | $0$ |
$2$ | $3$ | $(1,2,6)(3,4,5)$ | $-1$ |
$2$ | $6$ | $(1,3,2,4,6,5)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.