Properties

Label 2.331.24t22.2
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 331 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$331 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 3 x^{6} - 7 x^{4} + 17 x^{3} - 17 x^{2} + 11 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + \left(18 a + 11\right)\cdot 23 + \left(10 a + 2\right)\cdot 23^{2} + \left(3 a + 8\right)\cdot 23^{3} + \left(19 a + 7\right)\cdot 23^{4} + \left(15 a + 5\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 21 a + 4 + \left(4 a + 22\right)\cdot 23 + \left(12 a + 5\right)\cdot 23^{2} + \left(19 a + 4\right)\cdot 23^{3} + \left(3 a + 19\right)\cdot 23^{4} + \left(7 a + 17\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ a + 19 + \left(12 a + 22\right)\cdot 23 + \left(17 a + 1\right)\cdot 23^{2} + \left(20 a + 7\right)\cdot 23^{3} + \left(17 a + 19\right)\cdot 23^{4} + \left(4 a + 13\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 17 + 19\cdot 23 + 8\cdot 23^{2} + 7\cdot 23^{3} + 3\cdot 23^{4} + 18\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 9 + 2\cdot 23 + 5\cdot 23^{2} + 5\cdot 23^{3} + 17\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 22 a + 21 + \left(10 a + 22\right)\cdot 23 + \left(5 a + 1\right)\cdot 23^{2} + \left(2 a + 8\right)\cdot 23^{3} + \left(5 a + 11\right)\cdot 23^{4} + \left(18 a + 5\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 12 a + \left(22 a + 2\right)\cdot 23 + \left(22 a + 21\right)\cdot 23^{2} + \left(17 a + 7\right)\cdot 23^{3} + \left(19 a + 16\right)\cdot 23^{4} + \left(20 a + 7\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 11 a + 1 + 12\cdot 23 + 21\cdot 23^{2} + \left(5 a + 20\right)\cdot 23^{3} + \left(3 a + 14\right)\cdot 23^{4} + \left(2 a + 6\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,6,4)(5,7,8)$
$(1,6,2,8)(3,4,7,5)$
$(3,8)(4,5)(6,7)$
$(1,2)(3,7)(4,5)(6,8)$
$(1,4,2,5)(3,8,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,2)(3,7)(4,5)(6,8)$ $-2$ $-2$
$12$ $2$ $(3,8)(4,5)(6,7)$ $0$ $0$
$8$ $3$ $(1,3,5)(2,7,4)$ $-1$ $-1$
$6$ $4$ $(1,4,2,5)(3,8,7,6)$ $0$ $0$
$8$ $6$ $(1,2)(3,8,4,7,6,5)$ $1$ $1$
$6$ $8$ $(1,6,5,7,2,8,4,3)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$6$ $8$ $(1,8,5,3,2,6,4,7)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.