Properties

Label 2.3271.9t3.a.c
Dimension $2$
Group $D_{9}$
Conductor $3271$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{9}$
Conductor: \(3271\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 9.1.114478037712481.1
Galois orbit size: $3$
Smallest permutation container: $D_{9}$
Parity: odd
Determinant: 1.3271.2t1.a.a
Projective image: $D_9$
Projective stem field: Galois closure of 9.1.114478037712481.1

Defining polynomial

$f(x)$$=$ \( x^{9} - 3x^{8} + x^{7} + x^{6} + 55x^{5} - 260x^{4} + 550x^{3} - 686x^{2} + 489x - 197 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \( x^{3} + 4x + 17 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 14 a^{2} + 7 + \left(9 a^{2} + 5 a + 1\right)\cdot 19 + \left(10 a^{2} + 10 a + 16\right)\cdot 19^{2} + \left(4 a^{2} + 12 a + 11\right)\cdot 19^{3} + \left(7 a^{2} + 4 a + 5\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 13 a + 17 + \left(17 a + 18\right)\cdot 19 + \left(a^{2} + 12 a\right)\cdot 19^{2} + \left(3 a^{2} + 5 a\right)\cdot 19^{3} + \left(12 a^{2} + 8 a + 1\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 9 a^{2} + 18 a + \left(7 a^{2} + 2 a + 8\right)\cdot 19 + \left(5 a^{2} + 18 a + 2\right)\cdot 19^{2} + \left(7 a^{2} + 14 a\right)\cdot 19^{3} + \left(11 a^{2} + 13 a + 4\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( a^{2} + 18 a + 7 + \left(17 a^{2} + 5 a + 7\right)\cdot 19 + \left(9 a + 13\right)\cdot 19^{2} + \left(18 a^{2} + 7 a + 14\right)\cdot 19^{3} + \left(9 a^{2} + 11 a + 7\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 15 a^{2} + a + 16 + \left(a^{2} + 11 a + 11\right)\cdot 19 + \left(3 a^{2} + 9 a + 2\right)\cdot 19^{2} + \left(7 a^{2} + 10 a + 6\right)\cdot 19^{3} + 6\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 11 a^{2} + 2 a + 12 + \left(4 a^{2} + 11\right)\cdot 19 + \left(12 a^{2} + 14\right)\cdot 19^{2} + \left(14 a^{2} + 3 a + 15\right)\cdot 19^{3} + \left(9 a^{2} + 8 a + 7\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 18 a^{2} + 17 a + 18 + \left(a^{2} + 14 a + 10\right)\cdot 19 + \left(17 a^{2} + 2 a + 8\right)\cdot 19^{2} + \left(10 a^{2} + 9 a + 18\right)\cdot 19^{3} + \left(3 a + 14\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 18 a^{2} + 7 a + 8 + \left(a^{2} + 14 a + 11\right)\cdot 19 + \left(17 a^{2} + 15 a + 18\right)\cdot 19^{2} + \left(16 a^{2} + 5 a + 17\right)\cdot 19^{3} + \left(15 a^{2} + 18 a + 10\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 9 a^{2} + 13 + \left(12 a^{2} + 4 a + 13\right)\cdot 19 + \left(8 a^{2} + 16 a + 17\right)\cdot 19^{2} + \left(12 a^{2} + 6 a + 9\right)\cdot 19^{3} + \left(8 a^{2} + 7 a + 17\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,7)(2,4)(3,9)(5,6)$
$(1,8,7,5,4,9,3,2,6)$
$(1,5,3)(2,8,4)(6,7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,7)(2,4)(3,9)(5,6)$$0$
$2$$3$$(1,5,3)(2,8,4)(6,7,9)$$-1$
$2$$9$$(1,8,7,5,4,9,3,2,6)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$$9$$(1,7,4,3,6,8,5,9,2)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$$9$$(1,4,6,5,2,7,3,8,9)$$\zeta_{9}^{5} + \zeta_{9}^{4}$

The blue line marks the conjugacy class containing complex conjugation.