Properties

Label 2.3204.24t22.d
Dimension $2$
Group $\textrm{GL(2,3)}$
Conductor $3204$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:\(3204\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 89 \)
Artin number field: Galois closure of 8.2.24668275248.4
Galois orbit size: $2$
Smallest permutation container: 24T22
Parity: odd
Projective image: $S_4$
Projective field: Galois closure of 4.2.9612.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: \( x^{2} + 7x + 2 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 10 a + 3 + \left(2 a + 8\right)\cdot 11 + 7 a\cdot 11^{2} + \left(8 a + 7\right)\cdot 11^{3} + \left(7 a + 2\right)\cdot 11^{4} + \left(2 a + 9\right)\cdot 11^{5} + \left(3 a + 6\right)\cdot 11^{6} + \left(a + 6\right)\cdot 11^{7} + \left(3 a + 6\right)\cdot 11^{8} +O(11^{9})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 8 a + 7 + \left(6 a + 1\right)\cdot 11 + \left(7 a + 2\right)\cdot 11^{2} + \left(6 a + 3\right)\cdot 11^{3} + \left(8 a + 8\right)\cdot 11^{4} + \left(9 a + 10\right)\cdot 11^{5} + \left(7 a + 9\right)\cdot 11^{6} + \left(9 a + 6\right)\cdot 11^{7} + 2 a\cdot 11^{8} +O(11^{9})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 4 + 2\cdot 11^{2} + 4\cdot 11^{3} + 7\cdot 11^{4} + 2\cdot 11^{5} + 9\cdot 11^{6} + 7\cdot 11^{7} +O(11^{9})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 5 a + 9 + \left(2 a + 1\right)\cdot 11 + \left(2 a + 9\right)\cdot 11^{2} + \left(4 a + 6\right)\cdot 11^{3} + \left(2 a + 7\right)\cdot 11^{4} + 10\cdot 11^{5} + \left(6 a + 3\right)\cdot 11^{6} + \left(10 a + 3\right)\cdot 11^{7} + 11^{8} +O(11^{9})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 3 a + 6 + \left(4 a + 9\right)\cdot 11 + \left(3 a + 3\right)\cdot 11^{2} + 4 a\cdot 11^{3} + \left(2 a + 3\right)\cdot 11^{4} + \left(a + 8\right)\cdot 11^{5} + \left(3 a + 9\right)\cdot 11^{6} + \left(a + 4\right)\cdot 11^{7} + \left(8 a + 2\right)\cdot 11^{8} +O(11^{9})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( a + 10 + \left(8 a + 9\right)\cdot 11 + \left(3 a + 4\right)\cdot 11^{2} + \left(2 a + 1\right)\cdot 11^{3} + \left(3 a + 3\right)\cdot 11^{4} + \left(8 a + 1\right)\cdot 11^{5} + \left(7 a + 6\right)\cdot 11^{6} + \left(9 a + 8\right)\cdot 11^{7} + \left(7 a + 6\right)\cdot 11^{8} +O(11^{9})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 10 + 5\cdot 11 + 5\cdot 11^{2} + 10\cdot 11^{3} + 9\cdot 11^{4} + 2\cdot 11^{5} + 3\cdot 11^{6} + 10\cdot 11^{7} + 8\cdot 11^{8} +O(11^{9})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 6 a + 7 + \left(8 a + 6\right)\cdot 11 + \left(8 a + 4\right)\cdot 11^{2} + \left(6 a + 10\right)\cdot 11^{3} + \left(8 a + 1\right)\cdot 11^{4} + \left(10 a + 9\right)\cdot 11^{5} + \left(4 a + 5\right)\cdot 11^{6} + 6\cdot 11^{7} + \left(10 a + 5\right)\cdot 11^{8} +O(11^{9})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,2,6)(3,4,7,8)$
$(1,2)(3,7)(4,8)(5,6)$
$(3,5)(4,8)(6,7)$
$(3,6,8)(4,7,5)$
$(1,7,2,3)(4,6,8,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,2)(3,7)(4,8)(5,6)$ $-2$ $-2$
$12$ $2$ $(3,5)(4,8)(6,7)$ $0$ $0$
$8$ $3$ $(1,4,3)(2,8,7)$ $-1$ $-1$
$6$ $4$ $(1,7,2,3)(4,6,8,5)$ $0$ $0$
$8$ $6$ $(1,7,4,2,3,8)(5,6)$ $1$ $1$
$6$ $8$ $(1,7,8,6,2,3,4,5)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$6$ $8$ $(1,3,8,5,2,7,4,6)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.