Properties

Label 2.31e2_59.6t5.1c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 31^{2} \cdot 59 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$56699= 31^{2} \cdot 59 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 50 x^{4} - 33 x^{3} + 277 x^{2} + 700 x + 588 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.31_59.6t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + 10 + \left(9 a + 5\right)\cdot 23 + \left(15 a + 3\right)\cdot 23^{2} + \left(13 a + 16\right)\cdot 23^{3} + \left(7 a + 22\right)\cdot 23^{4} + \left(19 a + 11\right)\cdot 23^{5} + \left(16 a + 15\right)\cdot 23^{6} + \left(2 a + 21\right)\cdot 23^{7} + 9\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 2 }$ $=$ $ a + 8 + \left(13 a + 3\right)\cdot 23 + \left(7 a + 1\right)\cdot 23^{2} + \left(9 a + 5\right)\cdot 23^{3} + \left(15 a + 1\right)\cdot 23^{4} + \left(3 a + 20\right)\cdot 23^{5} + \left(6 a + 6\right)\cdot 23^{6} + \left(20 a + 10\right)\cdot 23^{7} + \left(22 a + 7\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 16 a + \left(3 a + 22\right)\cdot 23 + \left(18 a + 4\right)\cdot 23^{2} + \left(7 a + 20\right)\cdot 23^{3} + \left(21 a + 7\right)\cdot 23^{4} + \left(14 a + 14\right)\cdot 23^{5} + \left(14 a + 12\right)\cdot 23^{6} + \left(21 a + 16\right)\cdot 23^{7} + \left(17 a + 2\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 9 + \left(19 a + 13\right)\cdot 23 + \left(4 a + 14\right)\cdot 23^{2} + \left(15 a + 17\right)\cdot 23^{3} + \left(a + 19\right)\cdot 23^{4} + \left(8 a + 22\right)\cdot 23^{5} + \left(8 a + 3\right)\cdot 23^{6} + \left(a + 22\right)\cdot 23^{7} + \left(5 a + 16\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 13 + \left(16 a + 17\right)\cdot 23 + \left(19 a + 22\right)\cdot 23^{2} + \left(15 a + 21\right)\cdot 23^{3} + 15\cdot 23^{4} + \left(20 a + 14\right)\cdot 23^{5} + \left(17 a + 18\right)\cdot 23^{6} + \left(16 a + 2\right)\cdot 23^{7} + \left(9 a + 3\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 9 + \left(6 a + 7\right)\cdot 23 + \left(3 a + 22\right)\cdot 23^{2} + \left(7 a + 10\right)\cdot 23^{3} + \left(22 a + 1\right)\cdot 23^{4} + \left(2 a + 8\right)\cdot 23^{5} + \left(5 a + 11\right)\cdot 23^{6} + \left(6 a + 18\right)\cdot 23^{7} + \left(13 a + 5\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,5)$
$(1,4)(2,5)(3,6)$
$(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,4)(2,5)(3,6)$$0$
$1$$3$$(1,3,5)(2,4,6)$$-2 \zeta_{3} - 2$
$1$$3$$(1,5,3)(2,6,4)$$2 \zeta_{3}$
$2$$3$$(1,3,5)$$-\zeta_{3}$
$2$$3$$(1,5,3)$$\zeta_{3} + 1$
$2$$3$$(1,5,3)(2,4,6)$$-1$
$3$$6$$(1,6,3,2,5,4)$$0$
$3$$6$$(1,4,5,2,3,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.