Properties

Label 2.31e2_59.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 31^{2} \cdot 59 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$56699= 31^{2} \cdot 59 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 21 x^{4} - 17 x^{3} + 187 x^{2} + 17 x + 634 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 31 + 46\cdot 47 + 29\cdot 47^{2} + 4\cdot 47^{3} + 9\cdot 47^{4} + 15\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 13 + \left(20 a + 45\right)\cdot 47 + \left(2 a + 20\right)\cdot 47^{2} + \left(27 a + 30\right)\cdot 47^{3} + \left(4 a + 21\right)\cdot 47^{4} + \left(45 a + 7\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 43 a + 21 + \left(26 a + 34\right)\cdot 47 + \left(44 a + 5\right)\cdot 47^{2} + \left(19 a + 35\right)\cdot 47^{3} + \left(42 a + 3\right)\cdot 47^{4} + \left(a + 46\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 35 + 40\cdot 47 + 7\cdot 47^{2} + 36\cdot 47^{3} + 47^{4} + 32\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 43 a + 25 + \left(26 a + 28\right)\cdot 47 + \left(44 a + 30\right)\cdot 47^{2} + \left(19 a + 19\right)\cdot 47^{3} + \left(42 a + 43\right)\cdot 47^{4} + \left(a + 15\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 17 + \left(20 a + 39\right)\cdot 47 + \left(2 a + 45\right)\cdot 47^{2} + \left(27 a + 14\right)\cdot 47^{3} + \left(4 a + 14\right)\cdot 47^{4} + \left(45 a + 24\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,6)$
$(2,3)(5,6)$
$(1,4)(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,6)(3,5)$ $-2$
$3$ $2$ $(1,2)(4,6)$ $0$
$3$ $2$ $(1,6)(2,4)(3,5)$ $0$
$2$ $3$ $(1,3,2)(4,5,6)$ $-1$
$2$ $6$ $(1,5,2,4,3,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.