Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{3} + 4 x + 17 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 16 a^{2} + 5 a + 7 + \left(2 a^{2} + 9 a + 7\right)\cdot 19 + \left(13 a^{2} + 7 a + 13\right)\cdot 19^{2} + \left(11 a^{2} + 4 a + 14\right)\cdot 19^{3} + \left(12 a^{2} + 7 a + 10\right)\cdot 19^{4} + \left(4 a^{2} + 13 a + 18\right)\cdot 19^{5} + \left(8 a^{2} + 17 a + 10\right)\cdot 19^{6} + \left(a^{2} + a + 8\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 16 a^{2} + 5 a + 18 + \left(2 a^{2} + 9 a + 5\right)\cdot 19 + \left(13 a^{2} + 7 a + 6\right)\cdot 19^{2} + \left(11 a^{2} + 4 a\right)\cdot 19^{3} + \left(12 a^{2} + 7 a + 4\right)\cdot 19^{4} + \left(4 a^{2} + 13 a + 15\right)\cdot 19^{5} + \left(8 a^{2} + 17 a + 16\right)\cdot 19^{6} + \left(a^{2} + a + 1\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 13 a^{2} + 3 a + 1 + \left(10 a^{2} + a + 5\right)\cdot 19 + \left(6 a^{2} + 12 a + 17\right)\cdot 19^{2} + \left(2 a^{2} + 14 a + 2\right)\cdot 19^{3} + \left(12 a^{2} + 15\right)\cdot 19^{4} + \left(17 a^{2} + 4 a + 12\right)\cdot 19^{5} + \left(16 a^{2} + 5 a + 10\right)\cdot 19^{6} + \left(12 a^{2} + 2 a + 12\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 9 a^{2} + 11 a + 1 + \left(5 a^{2} + 8 a + 8\right)\cdot 19 + \left(18 a^{2} + 18 a + 14\right)\cdot 19^{2} + \left(4 a^{2} + 18 a + 15\right)\cdot 19^{3} + \left(13 a^{2} + 10 a + 18\right)\cdot 19^{4} + \left(15 a^{2} + a + 9\right)\cdot 19^{5} + \left(12 a^{2} + 15 a + 10\right)\cdot 19^{6} + \left(4 a^{2} + 14 a + 4\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 13 a^{2} + 3 a + 18 + \left(10 a^{2} + a + 2\right)\cdot 19 + \left(6 a^{2} + 12 a + 2\right)\cdot 19^{2} + \left(2 a^{2} + 14 a + 15\right)\cdot 19^{3} + \left(12 a^{2} + 15\right)\cdot 19^{4} + \left(17 a^{2} + 4 a + 8\right)\cdot 19^{5} + \left(16 a^{2} + 5 a + 2\right)\cdot 19^{6} + \left(12 a^{2} + 2 a + 1\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 9 a^{2} + 11 a + 3 + \left(5 a^{2} + 8 a + 10\right)\cdot 19 + \left(18 a^{2} + 18 a + 10\right)\cdot 19^{2} + \left(4 a^{2} + 18 a + 3\right)\cdot 19^{3} + \left(13 a^{2} + 10 a + 18\right)\cdot 19^{4} + \left(15 a^{2} + a + 13\right)\cdot 19^{5} + \left(12 a^{2} + 15 a + 18\right)\cdot 19^{6} + \left(4 a^{2} + 14 a + 15\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 13 a^{2} + 3 a + 10 + \left(10 a^{2} + a + 1\right)\cdot 19 + \left(6 a^{2} + 12 a + 14\right)\cdot 19^{2} + \left(2 a^{2} + 14 a\right)\cdot 19^{3} + \left(12 a^{2} + 9\right)\cdot 19^{4} + \left(17 a^{2} + 4 a + 5\right)\cdot 19^{5} + \left(16 a^{2} + 5 a + 8\right)\cdot 19^{6} + \left(12 a^{2} + 2 a + 13\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 9 a^{2} + 11 a + 12 + \left(5 a^{2} + 8 a + 6\right)\cdot 19 + \left(18 a^{2} + 18 a + 7\right)\cdot 19^{2} + \left(4 a^{2} + 18 a + 1\right)\cdot 19^{3} + \left(13 a^{2} + 10 a + 12\right)\cdot 19^{4} + \left(15 a^{2} + a + 6\right)\cdot 19^{5} + \left(12 a^{2} + 15 a + 16\right)\cdot 19^{6} + \left(4 a^{2} + 14 a + 16\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
| $r_{ 9 }$ |
$=$ |
$ 16 a^{2} + 5 a + 9 + \left(2 a^{2} + 9 a + 9\right)\cdot 19 + \left(13 a^{2} + 7 a + 9\right)\cdot 19^{2} + \left(11 a^{2} + 4 a + 2\right)\cdot 19^{3} + \left(12 a^{2} + 7 a + 10\right)\cdot 19^{4} + \left(4 a^{2} + 13 a + 3\right)\cdot 19^{5} + \left(8 a^{2} + 17 a\right)\cdot 19^{6} + \left(a^{2} + a + 1\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 9 }$
| Cycle notation |
| $(1,8)(5,6)(7,9)$ |
| $(1,4,5)(2,8,7)(3,9,6)$ |
| $(2,5)(3,8)(4,9)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 9 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $3$ |
$2$ |
$(1,8)(5,6)(7,9)$ |
$0$ |
$0$ |
| $1$ |
$3$ |
$(1,6,7)(2,4,3)(5,9,8)$ |
$2 \zeta_{3}$ |
$-2 \zeta_{3} - 2$ |
| $1$ |
$3$ |
$(1,7,6)(2,3,4)(5,8,9)$ |
$-2 \zeta_{3} - 2$ |
$2 \zeta_{3}$ |
| $2$ |
$3$ |
$(1,4,5)(2,8,7)(3,9,6)$ |
$\zeta_{3} + 1$ |
$-\zeta_{3}$ |
| $2$ |
$3$ |
$(1,5,4)(2,7,8)(3,6,9)$ |
$-\zeta_{3}$ |
$\zeta_{3} + 1$ |
| $2$ |
$3$ |
$(1,3,8)(2,5,6)(4,9,7)$ |
$-1$ |
$-1$ |
| $3$ |
$6$ |
$(1,7,6)(2,8,4,5,3,9)$ |
$0$ |
$0$ |
| $3$ |
$6$ |
$(1,6,7)(2,9,3,5,4,8)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.