Basic invariants
Dimension: | $2$ |
Group: | $S_3 \times C_5$ |
Conductor: | \(961\)\(\medspace = 31^{2} \) |
Artin number field: | Galois closure of 15.5.24417546297445042591.1 |
Galois orbit size: | $4$ |
Smallest permutation container: | $S_3 \times C_5$ |
Parity: | odd |
Projective image: | $S_3$ |
Projective field: | Galois closure of 3.1.31.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$:
\( x^{5} + x + 42 \)
Roots:
$r_{ 1 }$ | $=$ | \( 26 a^{3} + 21 a^{2} + 40 a + 17 + \left(13 a^{4} + 37 a^{3} + 40 a^{2} + 45 a + 13\right)\cdot 47 + \left(23 a^{4} + 43 a^{3} + 36 a^{2} + 42 a + 31\right)\cdot 47^{2} + \left(29 a^{4} + 23 a^{3} + 12 a^{2} + 42 a + 43\right)\cdot 47^{3} + \left(33 a^{4} + 39 a^{3} + 11 a^{2} + 19 a + 31\right)\cdot 47^{4} + \left(5 a^{4} + 35 a^{3} + 17 a^{2} + 22 a + 23\right)\cdot 47^{5} + \left(18 a^{4} + 36 a^{2} + 10 a + 19\right)\cdot 47^{6} +O(47^{7})\) |
$r_{ 2 }$ | $=$ | \( 4 a^{4} + 33 a^{3} + 38 a^{2} + 40 a + 16 + \left(42 a^{4} + 42 a^{3} + 24 a^{2} + 4 a + 39\right)\cdot 47 + \left(27 a^{4} + 19 a^{3} + 27 a^{2} + 24 a + 27\right)\cdot 47^{2} + \left(14 a^{4} + 9 a^{3} + 18 a^{2} + 22 a + 31\right)\cdot 47^{3} + \left(19 a^{4} + 33 a^{2} + 11 a + 14\right)\cdot 47^{4} + \left(a^{4} + 33 a^{3} + 23 a^{2} + 16 a + 18\right)\cdot 47^{5} + \left(34 a^{4} + 44 a^{3} + 6 a^{2} + 31 a + 1\right)\cdot 47^{6} +O(47^{7})\) |
$r_{ 3 }$ | $=$ | \( 5 a^{4} + 5 a^{3} + 46 a^{2} + 43 a + 22 + \left(23 a^{4} + 15 a^{3} + 19 a^{2} + 17 a\right)\cdot 47 + \left(34 a^{4} + 34 a^{3} + 40 a^{2} + 46 a\right)\cdot 47^{2} + \left(13 a^{4} + 36 a^{3} + 33 a^{2} + 42 a + 18\right)\cdot 47^{3} + \left(43 a^{4} + 4 a^{3} + 43 a^{2} + 15 a + 30\right)\cdot 47^{4} + \left(44 a^{4} + 43 a^{3} + 8 a^{2} + 17 a + 46\right)\cdot 47^{5} + \left(28 a^{4} + 46 a^{3} + 5 a^{2} + 45 a + 43\right)\cdot 47^{6} +O(47^{7})\) |
$r_{ 4 }$ | $=$ | \( 9 a^{4} + 15 a^{3} + 21 a^{2} + 35 a + 43 + \left(11 a^{4} + 21 a^{3} + 37 a^{2} + 21 a + 11\right)\cdot 47 + \left(38 a^{4} + 30 a^{3} + 39 a^{2} + 4 a + 43\right)\cdot 47^{2} + \left(16 a^{4} + 16 a^{3} + 9 a^{2} + 15 a + 42\right)\cdot 47^{3} + \left(28 a^{4} + 42 a^{3} + 42 a^{2} + 34 a + 8\right)\cdot 47^{4} + \left(37 a^{4} + 19 a^{3} + 34 a^{2} + 29 a + 2\right)\cdot 47^{5} + \left(11 a^{4} + 12 a^{3} + 19 a^{2} + 46 a + 5\right)\cdot 47^{6} +O(47^{7})\) |
$r_{ 5 }$ | $=$ | \( 13 a^{4} + 42 a^{3} + a^{2} + 43 a + 19 + \left(24 a^{4} + 32 a^{3} + 35 a^{2} + 21 a + 1\right)\cdot 47 + \left(19 a^{4} + 37 a^{3} + 46 a^{2} + 23 a + 35\right)\cdot 47^{2} + \left(13 a^{4} + 5 a^{3} + 38 a^{2} + 41 a + 17\right)\cdot 47^{3} + \left(13 a^{4} + 45 a^{3} + 28 a^{2} + 27 a + 6\right)\cdot 47^{4} + \left(11 a^{4} + 39 a^{3} + 36 a^{2} + 18 a + 29\right)\cdot 47^{5} + \left(6 a^{4} + 24 a^{3} + 17 a^{2} + 30 a + 44\right)\cdot 47^{6} +O(47^{7})\) |
$r_{ 6 }$ | $=$ | \( 16 a^{4} + 36 a^{3} + 28 a^{2} + 4 a + 12 + \left(6 a^{4} + 38 a^{3} + 41 a^{2} + 6 a + 15\right)\cdot 47 + \left(39 a^{4} + 27 a^{3} + 45 a^{2} + 17 a + 41\right)\cdot 47^{2} + \left(37 a^{4} + 14 a^{3} + 36 a^{2} + 27\right)\cdot 47^{3} + \left(19 a^{4} + 3 a^{3} + 20 a^{2} + 19 a + 11\right)\cdot 47^{4} + \left(31 a^{4} + 17 a^{3} + 13 a^{2} + 13 a + 45\right)\cdot 47^{5} + \left(11 a^{4} + 40 a^{3} + 22 a^{2} + 10 a + 1\right)\cdot 47^{6} +O(47^{7})\) |
$r_{ 7 }$ | $=$ | \( 22 a^{4} + 28 a^{3} + 37 a^{2} + 22 a + 44 + \left(39 a^{4} + 33 a^{3} + 18 a^{2} + 35 a + 43\right)\cdot 47 + \left(19 a^{4} + 7 a^{3} + 34 a^{2} + 29 a + 37\right)\cdot 47^{2} + \left(25 a^{4} + 38 a^{3} + 9 a^{2} + 18 a + 2\right)\cdot 47^{3} + \left(31 a^{4} + 21 a^{3} + 19 a^{2} + 34 a + 2\right)\cdot 47^{4} + \left(44 a^{4} + 23 a^{3} + 19 a^{2} + 21 a + 36\right)\cdot 47^{5} + \left(19 a^{4} + 40 a^{3} + 21 a^{2} + 28 a + 39\right)\cdot 47^{6} +O(47^{7})\) |
$r_{ 8 }$ | $=$ | \( 27 a^{4} + 12 a^{3} + 26 a^{2} + 44 a + 2 + \left(32 a^{4} + 16 a^{3} + 37 a^{2} + 10 a + 8\right)\cdot 47 + \left(38 a^{4} + 13 a^{3} + 40 a^{2} + 6 a + 22\right)\cdot 47^{2} + \left(10 a^{4} + 4 a^{3} + 2 a^{2} + 25 a + 34\right)\cdot 47^{3} + \left(10 a^{4} + 2 a^{3} + 17 a^{2} + 19 a + 22\right)\cdot 47^{4} + \left(27 a^{4} + a^{3} + 27 a^{2} + 42 a + 32\right)\cdot 47^{5} + \left(42 a^{4} + 44 a^{3} + 36 a^{2} + 11 a + 26\right)\cdot 47^{6} +O(47^{7})\) |
$r_{ 9 }$ | $=$ | \( 27 a^{4} + 26 a^{3} + 24 a^{2} + 30 a + 25 + \left(20 a^{4} + 35 a^{3} + 12 a^{2} + 5 a + 31\right)\cdot 47 + \left(42 a^{4} + 34 a^{3} + 30 a^{2} + 30 a + 20\right)\cdot 47^{2} + \left(16 a^{3} + 34 a^{2} + 46 a + 39\right)\cdot 47^{3} + \left(3 a^{4} + 35 a^{3} + 36 a^{2} + 27 a + 29\right)\cdot 47^{4} + \left(37 a^{4} + 15 a^{3} + 7 a^{2} + 8 a + 18\right)\cdot 47^{5} + \left(25 a^{4} + 46 a^{3} + 46 a^{2} + 24 a + 32\right)\cdot 47^{6} +O(47^{7})\) |
$r_{ 10 }$ | $=$ | \( 28 a^{4} + 36 a^{3} + 41 a^{2} + a + 7 + \left(36 a^{4} + 28 a^{3} + 39 a^{2} + 40 a + 16\right)\cdot 47 + \left(29 a^{4} + 13 a^{3} + 24 a^{2} + 44 a + 29\right)\cdot 47^{2} + \left(19 a^{4} + 9 a^{3} + 26 a^{2} + 4 a + 35\right)\cdot 47^{3} + \left(11 a^{4} + 29 a^{3} + 4 a^{2} + 46 a + 17\right)\cdot 47^{4} + \left(25 a^{4} + 12 a^{3} + 10 a^{2} + 39 a + 37\right)\cdot 47^{5} + \left(4 a^{4} + 42 a^{3} + 15 a^{2} + 36 a + 24\right)\cdot 47^{6} +O(47^{7})\) |
$r_{ 11 }$ | $=$ | \( 29 a^{4} + 27 a^{3} + 7 a^{2} + 45 a + 12 + \left(16 a^{4} + 22 a^{3} + 2 a^{2} + a + 16\right)\cdot 47 + \left(19 a^{4} + 21 a^{3} + 40 a^{2} + 30 a + 9\right)\cdot 47^{2} + \left(17 a^{4} + 11 a^{3} + 10 a^{2} + 15\right)\cdot 47^{3} + \left(40 a^{4} + 36 a^{3} + 22 a^{2} + 37 a + 37\right)\cdot 47^{4} + \left(2 a^{4} + 31 a^{3} + 10 a^{2} + 7 a + 30\right)\cdot 47^{5} + \left(13 a^{4} + 23 a^{3} + 7 a + 43\right)\cdot 47^{6} +O(47^{7})\) |
$r_{ 12 }$ | $=$ | \( 33 a^{4} + 46 a^{3} + 40 a^{2} + 7 a + 35 + \left(7 a^{4} + 37 a^{3} + 6 a^{2} + 37 a + 25\right)\cdot 47 + \left(9 a^{4} + 27 a^{3} + 14 a^{2} + 45\right)\cdot 47^{2} + \left(18 a^{4} + 32 a^{3} + 28 a^{2} + 31 a + 30\right)\cdot 47^{3} + \left(7 a^{4} + 38 a^{3} + 30 a^{2} + 11 a + 1\right)\cdot 47^{4} + \left(26 a^{4} + 39 a^{3} + 7 a^{2} + 2 a + 41\right)\cdot 47^{5} + \left(4 a^{4} + 31 a^{3} + 12 a^{2} + 43 a + 33\right)\cdot 47^{6} +O(47^{7})\) |
$r_{ 13 }$ | $=$ | \( 34 a^{4} + 45 a^{3} + 8 a^{2} + 46 a + 16 + \left(13 a^{4} + 25 a^{3} + 42 a^{2} + 35 a + 23\right)\cdot 47 + \left(40 a^{4} + 37 a^{3} + 36 a^{2} + 33 a + 35\right)\cdot 47^{2} + \left(4 a^{4} + 3 a^{3} + 3 a^{2} + 16 a + 42\right)\cdot 47^{3} + \left(7 a^{4} + a^{3} + 46 a^{2} + 15 a + 38\right)\cdot 47^{4} + \left(3 a^{4} + 30 a^{3} + 11 a^{2} + 12 a + 2\right)\cdot 47^{5} + \left(31 a^{4} + 16 a^{3} + 16 a^{2} + a + 11\right)\cdot 47^{6} +O(47^{7})\) |
$r_{ 14 }$ | $=$ | \( 39 a^{4} + 36 a^{3} + 28 a^{2} + 4 a + 44 + \left(22 a^{4} + 18 a^{3} + 39 a^{2} + 2 a + 23\right)\cdot 47 + \left(33 a^{4} + 39 a^{3} + 20 a^{2} + 14 a + 13\right)\cdot 47^{2} + \left(42 a^{4} + 4 a^{3} + 17 a^{2} + 15 a + 35\right)\cdot 47^{3} + \left(40 a^{4} + 7 a^{3} + 14 a^{2} + 29 a + 3\right)\cdot 47^{4} + \left(19 a^{4} + 30 a^{3} + 34 a^{2} + 14 a + 33\right)\cdot 47^{5} + \left(18 a^{4} + 20 a^{2} + 11 a + 7\right)\cdot 47^{6} +O(47^{7})\) |
$r_{ 15 }$ | $=$ | \( 43 a^{4} + 10 a^{3} + 10 a^{2} + 19 a + 19 + \left(18 a^{4} + 15 a^{3} + 24 a^{2} + 41 a + 11\right)\cdot 47 + \left(7 a^{4} + 33 a^{3} + 37 a^{2} + 27 a + 30\right)\cdot 47^{2} + \left(16 a^{4} + 6 a^{3} + 43 a^{2} + 4 a + 4\right)\cdot 47^{3} + \left(19 a^{4} + 22 a^{3} + 4 a^{2} + 26 a + 24\right)\cdot 47^{4} + \left(10 a^{4} + 2 a^{3} + 18 a^{2} + 14 a + 25\right)\cdot 47^{5} + \left(11 a^{4} + 7 a^{3} + 5 a^{2} + 37 a + 39\right)\cdot 47^{6} +O(47^{7})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 15 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 15 }$ | Character values | |||
$c1$ | $c2$ | $c3$ | $c4$ | |||
$1$ | $1$ | $()$ | $2$ | $2$ | $2$ | $2$ |
$3$ | $2$ | $(1,2)(4,9)(7,15)(10,13)(11,14)$ | $0$ | $0$ | $0$ | $0$ |
$2$ | $3$ | $(1,6,2)(3,14,11)(4,8,9)(5,10,13)(7,12,15)$ | $-1$ | $-1$ | $-1$ | $-1$ |
$1$ | $5$ | $(1,11,7,13,4)(2,14,15,10,9)(3,12,5,8,6)$ | $-2 \zeta_{5}^{3} - 2 \zeta_{5}^{2} - 2 \zeta_{5} - 2$ | $2 \zeta_{5}^{2}$ | $2 \zeta_{5}^{3}$ | $2 \zeta_{5}$ |
$1$ | $5$ | $(1,7,4,11,13)(2,15,9,14,10)(3,5,6,12,8)$ | $2 \zeta_{5}^{3}$ | $-2 \zeta_{5}^{3} - 2 \zeta_{5}^{2} - 2 \zeta_{5} - 2$ | $2 \zeta_{5}$ | $2 \zeta_{5}^{2}$ |
$1$ | $5$ | $(1,13,11,4,7)(2,10,14,9,15)(3,8,12,6,5)$ | $2 \zeta_{5}^{2}$ | $2 \zeta_{5}$ | $-2 \zeta_{5}^{3} - 2 \zeta_{5}^{2} - 2 \zeta_{5} - 2$ | $2 \zeta_{5}^{3}$ |
$1$ | $5$ | $(1,4,13,7,11)(2,9,10,15,14)(3,6,8,5,12)$ | $2 \zeta_{5}$ | $2 \zeta_{5}^{3}$ | $2 \zeta_{5}^{2}$ | $-2 \zeta_{5}^{3} - 2 \zeta_{5}^{2} - 2 \zeta_{5} - 2$ |
$3$ | $10$ | $(1,14,7,10,4,2,11,15,13,9)(3,12,5,8,6)$ | $0$ | $0$ | $0$ | $0$ |
$3$ | $10$ | $(1,10,11,9,7,2,13,14,4,15)(3,8,12,6,5)$ | $0$ | $0$ | $0$ | $0$ |
$3$ | $10$ | $(1,15,4,14,13,2,7,9,11,10)(3,5,6,12,8)$ | $0$ | $0$ | $0$ | $0$ |
$3$ | $10$ | $(1,9,13,15,11,2,4,10,7,14)(3,6,8,5,12)$ | $0$ | $0$ | $0$ | $0$ |
$2$ | $15$ | $(1,3,15,13,8,2,11,12,10,4,6,14,7,5,9)$ | $\zeta_{5}^{3} + \zeta_{5}^{2} + \zeta_{5} + 1$ | $-\zeta_{5}^{2}$ | $-\zeta_{5}^{3}$ | $-\zeta_{5}$ |
$2$ | $15$ | $(1,15,8,11,10,6,7,9,3,13,2,12,4,14,5)$ | $-\zeta_{5}^{3}$ | $\zeta_{5}^{3} + \zeta_{5}^{2} + \zeta_{5} + 1$ | $-\zeta_{5}$ | $-\zeta_{5}^{2}$ |
$2$ | $15$ | $(1,8,10,7,3,2,4,5,15,11,6,9,13,12,14)$ | $-\zeta_{5}$ | $-\zeta_{5}^{3}$ | $-\zeta_{5}^{2}$ | $\zeta_{5}^{3} + \zeta_{5}^{2} + \zeta_{5} + 1$ |
$2$ | $15$ | $(1,5,14,4,12,2,13,3,9,7,6,10,11,8,15)$ | $-\zeta_{5}^{2}$ | $-\zeta_{5}$ | $\zeta_{5}^{3} + \zeta_{5}^{2} + \zeta_{5} + 1$ | $-\zeta_{5}^{3}$ |