Properties

Label 2.31_67e2.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 31 \cdot 67^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$139159= 31 \cdot 67^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 51 x^{4} + 104 x^{3} + 79 x^{2} + 3788 x + 8384 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 38 a + 21 + \left(28 a + 6\right)\cdot 43 + \left(17 a + 36\right)\cdot 43^{2} + \left(3 a + 3\right)\cdot 43^{3} + \left(32 a + 41\right)\cdot 43^{4} + \left(28 a + 41\right)\cdot 43^{5} + \left(11 a + 13\right)\cdot 43^{6} + \left(5 a + 10\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 19 a + 31 + \left(36 a + 41\right)\cdot 43 + \left(25 a + 27\right)\cdot 43^{2} + \left(24 a + 23\right)\cdot 43^{3} + \left(a + 39\right)\cdot 43^{4} + \left(7 a + 21\right)\cdot 43^{5} + \left(35 a + 18\right)\cdot 43^{6} + 11 a\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 21 + \left(14 a + 12\right)\cdot 43 + \left(38 a + 42\right)\cdot 43^{2} + \left(25 a + 7\right)\cdot 43^{3} + \left(33 a + 20\right)\cdot 43^{4} + \left(2 a + 36\right)\cdot 43^{5} + \left(27 a + 35\right)\cdot 43^{6} + \left(23 a + 5\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 16 + \left(14 a + 40\right)\cdot 43 + \left(25 a + 24\right)\cdot 43^{2} + \left(39 a + 32\right)\cdot 43^{3} + \left(10 a + 26\right)\cdot 43^{4} + \left(14 a + 38\right)\cdot 43^{5} + \left(31 a + 39\right)\cdot 43^{6} + \left(37 a + 3\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 24 a + 7 + \left(6 a + 16\right)\cdot 43 + \left(17 a + 17\right)\cdot 43^{2} + \left(18 a + 22\right)\cdot 43^{3} + \left(41 a + 16\right)\cdot 43^{4} + \left(35 a + 27\right)\cdot 43^{5} + \left(7 a + 3\right)\cdot 43^{6} + \left(31 a + 20\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 28 a + 36 + \left(28 a + 11\right)\cdot 43 + \left(4 a + 23\right)\cdot 43^{2} + \left(17 a + 38\right)\cdot 43^{3} + \left(9 a + 27\right)\cdot 43^{4} + \left(40 a + 5\right)\cdot 43^{5} + \left(15 a + 17\right)\cdot 43^{6} + \left(19 a + 2\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(2,3)(4,5)$
$(1,5,3)$
$(2,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,6)(2,3)(4,5)$ $0$ $0$
$1$ $3$ $(1,5,3)(2,6,4)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,3,5)(2,4,6)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,5,3)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,3,5)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,3,5)(2,6,4)$ $-1$ $-1$
$3$ $6$ $(1,4,5,2,3,6)$ $0$ $0$
$3$ $6$ $(1,6,3,2,5,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.