Properties

Label 2.31_67e2.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 31 \cdot 67^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$139159= 31 \cdot 67^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 50 x^{4} - 31 x^{3} + 849 x^{2} - 390 x + 4931 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 17 + \left(2 a + 13\right)\cdot 23 + \left(13 a + 13\right)\cdot 23^{2} + \left(11 a + 9\right)\cdot 23^{3} + \left(16 a + 18\right)\cdot 23^{4} + \left(a + 22\right)\cdot 23^{5} + \left(17 a + 2\right)\cdot 23^{6} + \left(14 a + 7\right)\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 4 + 21\cdot 23 + 6\cdot 23^{2} + 4\cdot 23^{3} + 13\cdot 23^{4} + 5\cdot 23^{5} + 16\cdot 23^{6} + 12\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 11 a + \left(20 a + 2\right)\cdot 23 + \left(9 a + 14\right)\cdot 23^{2} + \left(11 a + 12\right)\cdot 23^{3} + \left(6 a + 7\right)\cdot 23^{4} + \left(21 a + 7\right)\cdot 23^{5} + \left(5 a + 14\right)\cdot 23^{6} + \left(8 a + 8\right)\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 22 + \left(2 a + 8\right)\cdot 23 + \left(13 a + 13\right)\cdot 23^{2} + \left(11 a + 2\right)\cdot 23^{3} + \left(16 a + 9\right)\cdot 23^{4} + \left(a + 20\right)\cdot 23^{5} + \left(17 a + 4\right)\cdot 23^{6} + \left(14 a + 19\right)\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 9 + 16\cdot 23 + 6\cdot 23^{2} + 20\cdot 23^{3} + 3\cdot 23^{4} + 3\cdot 23^{5} + 18\cdot 23^{6} + 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 18 + \left(20 a + 6\right)\cdot 23 + \left(9 a + 14\right)\cdot 23^{2} + \left(11 a + 19\right)\cdot 23^{3} + \left(6 a + 16\right)\cdot 23^{4} + \left(21 a + 9\right)\cdot 23^{5} + \left(5 a + 12\right)\cdot 23^{6} + \left(8 a + 19\right)\cdot 23^{7} +O\left(23^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)(3,4,5)$
$(1,3)(2,5)(4,6)$
$(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-2$
$3$ $2$ $(1,3)(2,5)(4,6)$ $0$
$3$ $2$ $(2,6)(3,5)$ $0$
$2$ $3$ $(1,2,6)(3,4,5)$ $-1$
$2$ $6$ $(1,3,2,4,6,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.