Properties

Label 2.31_67e2.6t3.1
Dimension 2
Group $D_{6}$
Conductor $ 31 \cdot 67^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$139159= 31 \cdot 67^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 35 x^{4} + 117 x^{3} + 138 x^{2} + 2567 x - 144363 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 12 + 13\cdot 43 + \left(11 a + 12\right)\cdot 43^{2} + \left(23 a + 32\right)\cdot 43^{3} + 35 a\cdot 43^{4} + \left(15 a + 19\right)\cdot 43^{5} + \left(11 a + 37\right)\cdot 43^{6} + \left(7 a + 25\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 4 + 32\cdot 43 + 7\cdot 43^{2} + 9\cdot 43^{3} + 29\cdot 43^{4} + 24\cdot 43^{5} + 15\cdot 43^{6} + 38\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 33 a + 20 + \left(21 a + 23\right)\cdot 43 + \left(17 a + 22\right)\cdot 43^{2} + \left(23 a + 22\right)\cdot 43^{3} + \left(31 a + 2\right)\cdot 43^{4} + \left(10 a + 31\right)\cdot 43^{5} + \left(38 a + 42\right)\cdot 43^{6} + \left(28 a + 40\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 14 + 7\cdot 43 + 2\cdot 43^{2} + 35\cdot 43^{3} + 29\cdot 43^{4} + 43^{5} + 16\cdot 43^{6} + 13\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 10 + \left(21 a + 12\right)\cdot 43 + \left(25 a + 18\right)\cdot 43^{2} + \left(19 a + 28\right)\cdot 43^{3} + \left(11 a + 10\right)\cdot 43^{4} + \left(32 a + 10\right)\cdot 43^{5} + \left(4 a + 27\right)\cdot 43^{6} + \left(14 a + 31\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 28 + \left(42 a + 40\right)\cdot 43 + \left(31 a + 22\right)\cdot 43^{2} + \left(19 a + 1\right)\cdot 43^{3} + \left(7 a + 13\right)\cdot 43^{4} + \left(27 a + 42\right)\cdot 43^{5} + \left(31 a + 32\right)\cdot 43^{6} + \left(35 a + 21\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(1,3,2,5,6,4)$
$(2,6)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,4)(3,6)$ $-2$
$3$ $2$ $(1,2)(4,5)$ $0$
$3$ $2$ $(1,5)(2,3)(4,6)$ $0$
$2$ $3$ $(1,2,6)(3,5,4)$ $-1$
$2$ $6$ $(1,3,2,5,6,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.