Properties

Label 2.31_53e2.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 31 \cdot 53^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$87079= 31 \cdot 53^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 25 x^{4} - 93 x^{3} + 288 x^{2} + 1547 x + 72957 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 29 a + 26 + \left(28 a + 9\right)\cdot 61 + \left(43 a + 40\right)\cdot 61^{2} + \left(49 a + 44\right)\cdot 61^{3} + \left(10 a + 23\right)\cdot 61^{4} + \left(52 a + 59\right)\cdot 61^{5} + \left(3 a + 44\right)\cdot 61^{6} + \left(39 a + 60\right)\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 53 + 4\cdot 61 + 56\cdot 61^{2} + 20\cdot 61^{3} + 46\cdot 61^{4} + 36\cdot 61^{5} + 9\cdot 61^{6} + 8\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 24 + \left(44 a + 47\right)\cdot 61 + \left(13 a + 17\right)\cdot 61^{2} + \left(60 a + 27\right)\cdot 61^{3} + \left(5 a + 34\right)\cdot 61^{4} + \left(58 a + 16\right)\cdot 61^{5} + \left(46 a + 31\right)\cdot 61^{6} + 49\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 32 a + 55 + \left(32 a + 8\right)\cdot 61 + \left(17 a + 55\right)\cdot 61^{2} + \left(11 a + 50\right)\cdot 61^{3} + \left(50 a + 45\right)\cdot 61^{4} + \left(8 a + 39\right)\cdot 61^{5} + \left(57 a + 57\right)\cdot 61^{6} + \left(21 a + 34\right)\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 42 + 42\cdot 61 + 26\cdot 61^{2} + 26\cdot 61^{3} + 52\cdot 61^{4} + 22\cdot 61^{5} + 19\cdot 61^{6} + 26\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 39 a + 46 + \left(16 a + 8\right)\cdot 61 + \left(47 a + 48\right)\cdot 61^{2} + 12\cdot 61^{3} + \left(55 a + 41\right)\cdot 61^{4} + \left(2 a + 7\right)\cdot 61^{5} + \left(14 a + 20\right)\cdot 61^{6} + \left(60 a + 3\right)\cdot 61^{7} +O\left(61^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(1,2)(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,5)(3,4)$ $-2$
$3$ $2$ $(1,2)(3,4)(5,6)$ $0$
$3$ $2$ $(1,4)(3,6)$ $0$
$2$ $3$ $(1,5,4)(2,3,6)$ $-1$
$2$ $6$ $(1,3,5,6,4,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.