Properties

Label 2.31_37.8t12.1c1
Dimension 2
Group $\SL(2,3)$
Conductor $ 31 \cdot 37 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$1147= 31 \cdot 37 $
Artin number field: Splitting field of $f= x^{8} + 17 x^{6} + 59 x^{4} + 46 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\SL(2,3)$
Parity: Even
Determinant: 1.31_37.3t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 18.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 10 a^{2} + 4 a + 3 + \left(7 a^{2} + a + 9\right)\cdot 11 + \left(2 a^{2} + 7 a + 10\right)\cdot 11^{2} + \left(9 a^{2} + 4 a + 1\right)\cdot 11^{3} + \left(6 a^{2} + 9 a + 3\right)\cdot 11^{4} + \left(6 a^{2} + 2 a + 1\right)\cdot 11^{5} + \left(6 a^{2} + 5 a + 5\right)\cdot 11^{7} + \left(4 a^{2} + 10 a\right)\cdot 11^{8} + \left(a + 4\right)\cdot 11^{9} + \left(8 a^{2} + a + 8\right)\cdot 11^{10} + \left(7 a^{2} + 10\right)\cdot 11^{11} + \left(3 a + 6\right)\cdot 11^{12} + \left(7 a^{2} + a + 8\right)\cdot 11^{13} + \left(5 a^{2} + 5 a + 7\right)\cdot 11^{14} + \left(9 a^{2} + 10 a + 1\right)\cdot 11^{15} + \left(6 a^{2} + 6 a + 3\right)\cdot 11^{16} + \left(3 a^{2} + 4 a + 3\right)\cdot 11^{17} +O\left(11^{ 18 }\right)$
$r_{ 2 }$ $=$ $ 6 a^{2} + 5 + \left(4 a^{2} + a + 8\right)\cdot 11 + \left(a^{2} + 5 a + 1\right)\cdot 11^{2} + \left(10 a^{2} + 5 a + 3\right)\cdot 11^{3} + \left(a^{2} + 10 a\right)\cdot 11^{4} + \left(9 a^{2} + 7 a + 1\right)\cdot 11^{5} + \left(8 a^{2} + 2 a\right)\cdot 11^{6} + \left(6 a^{2} + 2 a + 6\right)\cdot 11^{7} + \left(a^{2} + 7\right)\cdot 11^{8} + \left(2 a^{2} + 2\right)\cdot 11^{9} + \left(10 a^{2} + 10 a\right)\cdot 11^{10} + \left(2 a^{2} + 2 a + 8\right)\cdot 11^{11} + \left(5 a^{2} + 10 a + 5\right)\cdot 11^{12} + \left(7 a^{2} + a + 5\right)\cdot 11^{13} + \left(2 a^{2} + 7\right)\cdot 11^{14} + \left(6 a^{2} + 4\right)\cdot 11^{15} + \left(8 a^{2} + 4 a + 5\right)\cdot 11^{16} + \left(8 a + 10\right)\cdot 11^{17} +O\left(11^{ 18 }\right)$
$r_{ 3 }$ $=$ $ 6 a^{2} + 7 a + 5 + \left(9 a^{2} + 8 a\right)\cdot 11 + \left(6 a^{2} + 9 a + 9\right)\cdot 11^{2} + \left(2 a^{2} + 7\right)\cdot 11^{3} + \left(2 a^{2} + 2 a\right)\cdot 11^{4} + \left(6 a^{2} + 8\right)\cdot 11^{5} + \left(a^{2} + 8 a + 8\right)\cdot 11^{6} + \left(9 a^{2} + 3 a + 1\right)\cdot 11^{7} + \left(4 a^{2} + 8\right)\cdot 11^{8} + \left(8 a^{2} + 9 a + 3\right)\cdot 11^{9} + \left(3 a^{2} + 10 a + 6\right)\cdot 11^{10} + \left(7 a + 4\right)\cdot 11^{11} + \left(5 a^{2} + 8 a + 5\right)\cdot 11^{12} + \left(7 a^{2} + 7 a + 5\right)\cdot 11^{13} + \left(2 a^{2} + 5 a + 7\right)\cdot 11^{14} + \left(6 a^{2} + 4\right)\cdot 11^{15} + \left(6 a^{2} + 6\right)\cdot 11^{16} + \left(6 a^{2} + 9 a + 3\right)\cdot 11^{17} +O\left(11^{ 18 }\right)$
$r_{ 4 }$ $=$ $ 5 + 2\cdot 11 + 7\cdot 11^{2} + 11^{3} + 8\cdot 11^{4} + 9\cdot 11^{5} + 6\cdot 11^{6} + 5\cdot 11^{7} + 9\cdot 11^{8} + 9\cdot 11^{9} + 5\cdot 11^{10} + 3\cdot 11^{11} + 4\cdot 11^{12} + 11^{13} + 6\cdot 11^{14} + 4\cdot 11^{15} + 10\cdot 11^{16} + 3\cdot 11^{17} +O\left(11^{ 18 }\right)$
$r_{ 5 }$ $=$ $ a^{2} + 7 a + 8 + \left(3 a^{2} + 9 a + 1\right)\cdot 11 + \left(8 a^{2} + 3 a\right)\cdot 11^{2} + \left(a^{2} + 6 a + 9\right)\cdot 11^{3} + \left(4 a^{2} + a + 7\right)\cdot 11^{4} + \left(4 a^{2} + 8 a + 9\right)\cdot 11^{5} + \left(10 a^{2} + 10 a + 10\right)\cdot 11^{6} + \left(4 a^{2} + 5 a + 5\right)\cdot 11^{7} + \left(6 a^{2} + 10\right)\cdot 11^{8} + \left(10 a^{2} + 9 a + 6\right)\cdot 11^{9} + \left(2 a^{2} + 9 a + 2\right)\cdot 11^{10} + \left(3 a^{2} + 10 a\right)\cdot 11^{11} + \left(10 a^{2} + 7 a + 4\right)\cdot 11^{12} + \left(3 a^{2} + 9 a + 2\right)\cdot 11^{13} + \left(5 a^{2} + 5 a + 3\right)\cdot 11^{14} + \left(a^{2} + 9\right)\cdot 11^{15} + \left(4 a^{2} + 4 a + 7\right)\cdot 11^{16} + \left(7 a^{2} + 6 a + 7\right)\cdot 11^{17} +O\left(11^{ 18 }\right)$
$r_{ 6 }$ $=$ $ 5 a^{2} + 6 + \left(6 a^{2} + 10 a + 2\right)\cdot 11 + \left(9 a^{2} + 5 a + 9\right)\cdot 11^{2} + \left(5 a + 7\right)\cdot 11^{3} + \left(9 a^{2} + 10\right)\cdot 11^{4} + \left(a^{2} + 3 a + 9\right)\cdot 11^{5} + \left(2 a^{2} + 8 a + 10\right)\cdot 11^{6} + \left(4 a^{2} + 8 a + 4\right)\cdot 11^{7} + \left(9 a^{2} + 10 a + 3\right)\cdot 11^{8} + \left(8 a^{2} + 10 a + 8\right)\cdot 11^{9} + 10\cdot 11^{10} + \left(8 a^{2} + 8 a + 2\right)\cdot 11^{11} + \left(5 a^{2} + 5\right)\cdot 11^{12} + \left(3 a^{2} + 9 a + 5\right)\cdot 11^{13} + \left(8 a^{2} + 10 a + 3\right)\cdot 11^{14} + \left(4 a^{2} + 10 a + 6\right)\cdot 11^{15} + \left(2 a^{2} + 6 a + 5\right)\cdot 11^{16} + \left(10 a^{2} + 2 a\right)\cdot 11^{17} +O\left(11^{ 18 }\right)$
$r_{ 7 }$ $=$ $ 5 a^{2} + 4 a + 6 + \left(a^{2} + 2 a + 10\right)\cdot 11 + \left(4 a^{2} + a + 1\right)\cdot 11^{2} + \left(8 a^{2} + 10 a + 3\right)\cdot 11^{3} + \left(8 a^{2} + 8 a + 10\right)\cdot 11^{4} + \left(4 a^{2} + 10 a + 2\right)\cdot 11^{5} + \left(9 a^{2} + 2 a + 2\right)\cdot 11^{6} + \left(a^{2} + 7 a + 9\right)\cdot 11^{7} + \left(6 a^{2} + 10 a + 2\right)\cdot 11^{8} + \left(2 a^{2} + a + 7\right)\cdot 11^{9} + \left(7 a^{2} + 4\right)\cdot 11^{10} + \left(10 a^{2} + 3 a + 6\right)\cdot 11^{11} + \left(5 a^{2} + 2 a + 5\right)\cdot 11^{12} + \left(3 a^{2} + 3 a + 5\right)\cdot 11^{13} + \left(8 a^{2} + 5 a + 3\right)\cdot 11^{14} + \left(4 a^{2} + 10 a + 6\right)\cdot 11^{15} + \left(4 a^{2} + 10 a + 4\right)\cdot 11^{16} + \left(4 a^{2} + a + 7\right)\cdot 11^{17} +O\left(11^{ 18 }\right)$
$r_{ 8 }$ $=$ $ 6 + 8\cdot 11 + 3\cdot 11^{2} + 9\cdot 11^{3} + 2\cdot 11^{4} + 11^{5} + 4\cdot 11^{6} + 5\cdot 11^{7} + 11^{8} + 11^{9} + 5\cdot 11^{10} + 7\cdot 11^{11} + 6\cdot 11^{12} + 9\cdot 11^{13} + 4\cdot 11^{14} + 6\cdot 11^{15} + 7\cdot 11^{17} +O\left(11^{ 18 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,8,7)(3,6,4)$
$(1,3,5,7)(2,8,6,4)$
$(1,5)(2,6)(3,7)(4,8)$
$(1,4,5,8)(2,3,6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-2$
$4$$3$$(1,3,2)(5,7,6)$$\zeta_{3} + 1$
$4$$3$$(1,2,3)(5,6,7)$$-\zeta_{3}$
$6$$4$$(1,3,5,7)(2,8,6,4)$$0$
$4$$6$$(1,6,3,5,2,7)(4,8)$$\zeta_{3}$
$4$$6$$(1,7,2,5,3,6)(4,8)$$-\zeta_{3} - 1$
The blue line marks the conjugacy class containing complex conjugation.