Properties

Label 2.31_233.7t2.1c3
Dimension 2
Group $D_{7}$
Conductor $ 31 \cdot 233 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{7}$
Conductor:$7223= 31 \cdot 233 $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + 12 x^{5} - 22 x^{4} - 16 x^{3} + 72 x^{2} + 117 x + 81 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{7}$
Parity: Odd
Determinant: 1.31_233.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + \left(11 a + 5\right)\cdot 23 + \left(3 a + 6\right)\cdot 23^{2} + \left(3 a + 2\right)\cdot 23^{3} + \left(7 a + 14\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 a + 20 + \left(11 a + 17\right)\cdot 23 + \left(19 a + 1\right)\cdot 23^{2} + \left(19 a + 5\right)\cdot 23^{3} + \left(15 a + 2\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 + 15\cdot 23 + 7\cdot 23^{3} + 11\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ a + 3 + \left(7 a + 20\right)\cdot 23 + \left(3 a + 10\right)\cdot 23^{2} + \left(14 a + 15\right)\cdot 23^{3} + \left(19 a + 6\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 12 a + 19 + \left(9 a + 19\right)\cdot 23 + \left(9 a + 14\right)\cdot 23^{2} + \left(7 a + 19\right)\cdot 23^{3} + 4\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 22 a + 5 + \left(15 a + 10\right)\cdot 23 + \left(19 a + 10\right)\cdot 23^{2} + \left(8 a + 17\right)\cdot 23^{3} + \left(3 a + 8\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 11 a + 20 + \left(13 a + 3\right)\cdot 23 + \left(13 a + 1\right)\cdot 23^{2} + \left(15 a + 2\right)\cdot 23^{3} + \left(22 a + 21\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,5)(3,6)(4,7)$
$(1,7)(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$2$
$7$$2$$(1,5)(3,6)(4,7)$$0$
$2$$7$$(1,3,2,6,5,7,4)$$\zeta_{7}^{5} + \zeta_{7}^{2}$
$2$$7$$(1,2,5,4,3,6,7)$$\zeta_{7}^{4} + \zeta_{7}^{3}$
$2$$7$$(1,6,4,2,7,3,5)$$-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$
The blue line marks the conjugacy class containing complex conjugation.