Properties

Label 2.3104.4t3.d.a
Dimension $2$
Group $D_4$
Conductor $3104$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_4$
Conductor: \(3104\)\(\medspace = 2^{5} \cdot 97 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin field: Galois closure of 8.0.5801854959616.2
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.776.2t1.b.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-2}, \sqrt{97})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - 2x^{6} - 7x^{4} + 784x^{2} + 16 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 12 + 63\cdot 89 + 41\cdot 89^{2} + 13\cdot 89^{3} + 5\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 21 + 58\cdot 89 + 10\cdot 89^{2} + 6\cdot 89^{3} + 2\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 23 + 38\cdot 89 + 41\cdot 89^{2} + 40\cdot 89^{3} + 9\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 32 + 33\cdot 89 + 10\cdot 89^{2} + 33\cdot 89^{3} + 6\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 57 + 55\cdot 89 + 78\cdot 89^{2} + 55\cdot 89^{3} + 82\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 66 + 50\cdot 89 + 47\cdot 89^{2} + 48\cdot 89^{3} + 79\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 68 + 30\cdot 89 + 78\cdot 89^{2} + 82\cdot 89^{3} + 86\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 77 + 25\cdot 89 + 47\cdot 89^{2} + 75\cdot 89^{3} + 83\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,7)(2,8)(3,5)(4,6)$$-2$
$2$$2$$(1,2)(3,6)(4,5)(7,8)$$0$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$4$$(1,4,7,6)(2,3,8,5)$$0$