Properties

Label 2.3104.4t3.c.a
Dimension $2$
Group $D_{4}$
Conductor $3104$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(3104\)\(\medspace = 2^{5} \cdot 97 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.24832.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.776.2t1.b.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-2}, \sqrt{97})\)

Defining polynomial

$f(x)$$=$ \( x^{4} + 6x^{2} - 12x + 22 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 6 + 25\cdot 43 + 22\cdot 43^{2} + 28\cdot 43^{3} + 12\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 18 + 5\cdot 43 + 9\cdot 43^{2} + 23\cdot 43^{3} + 31\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 21 + 36\cdot 43 + 8\cdot 43^{2} + 7\cdot 43^{3} + 22\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 41 + 18\cdot 43 + 2\cdot 43^{2} + 27\cdot 43^{3} + 19\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,3)$$0$
$2$$4$$(1,4,3,2)$$0$