Basic invariants
Dimension: | $2$ |
Group: | $S_3 \times C_6$ |
Conductor: | \(3040\)\(\medspace = 2^{5} \cdot 5 \cdot 19 \) |
Artin number field: | Galois closure of 18.0.4641657809149437673472000000000.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_6\times S_3$ |
Parity: | odd |
Projective image: | $S_3$ |
Projective field: | Galois closure of 3.1.14440.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$:
\( x^{6} + x^{4} + 25x^{3} + 17x^{2} + 13x + 2 \)
Roots:
$r_{ 1 }$ | $=$ | \( 10 a^{5} + 17 a^{4} + 17 a^{3} + 24 a^{2} + 4 a + 4 + \left(27 a^{5} + 10 a^{4} + 8 a^{3} + 10 a^{2} + a + 17\right)\cdot 29 + \left(4 a^{5} + 6 a^{4} + 28 a^{3} + 7 a^{2} + 16 a + 22\right)\cdot 29^{2} + \left(12 a^{5} + 16 a^{4} + 26 a^{3} + 24 a^{2} + a + 24\right)\cdot 29^{3} + \left(a^{5} + 10 a^{4} + 16 a^{3} + 15 a^{2} + 26 a + 23\right)\cdot 29^{4} + \left(27 a^{5} + 25 a^{4} + 3 a^{3} + 18 a^{2} + 17 a + 26\right)\cdot 29^{5} + \left(14 a^{5} + 10 a^{4} + 7 a^{3} + 27 a^{2} + a + 1\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 2 }$ | $=$ | \( 14 a^{5} + 5 a^{4} + 9 a^{3} + 18 a^{2} + 23 a + 19 + \left(18 a^{5} + 21 a^{4} + 6 a^{3} + 18 a^{2} + 24 a + 4\right)\cdot 29 + \left(8 a^{5} + 26 a^{4} + 2 a^{3} + 11 a^{2} + 8 a + 12\right)\cdot 29^{2} + \left(3 a^{5} + 5 a^{4} + 4 a^{3} + 3 a^{2} + 27 a + 15\right)\cdot 29^{3} + \left(17 a^{5} + 18 a^{4} + 2 a^{3} + 28 a^{2} + 21 a + 1\right)\cdot 29^{4} + \left(24 a^{5} + a^{4} + 5 a^{3} + 28 a^{2} + 21 a\right)\cdot 29^{5} + \left(16 a^{5} + 24 a^{4} + 23 a^{3} + 24 a^{2} + 17 a + 26\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 3 }$ | $=$ | \( a^{5} + 26 a^{4} + 27 a^{3} + 13 a^{2} + 12 a + 4 + \left(15 a^{5} + 9 a^{4} + 16 a^{3} + 8 a^{2} + 24 a + 25\right)\cdot 29 + \left(10 a^{5} + 9 a^{4} + 9 a^{2} + 13 a + 12\right)\cdot 29^{2} + \left(18 a^{5} + 12 a^{4} + a^{3} + 19 a^{2} + 8 a + 13\right)\cdot 29^{3} + \left(a^{5} + 4 a^{4} + 12 a^{3} + 24 a^{2} + 19 a + 6\right)\cdot 29^{4} + \left(18 a^{5} + 15 a^{4} + 7 a^{3} + 23 a^{2} + 8 a + 24\right)\cdot 29^{5} + \left(21 a^{5} + 17 a^{4} + 18 a^{3} + 5 a^{2} + 7 a + 2\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 4 }$ | $=$ | \( 14 a^{5} + 27 a^{4} + 22 a^{3} + 27 a^{2} + 23 a + 6 + \left(24 a^{5} + 26 a^{4} + 5 a^{3} + a^{2} + 8 a + 5\right)\cdot 29 + \left(9 a^{5} + 21 a^{4} + 26 a^{3} + 8 a^{2} + 6 a + 4\right)\cdot 29^{2} + \left(7 a^{5} + 10 a^{4} + 23 a^{3} + 6 a^{2} + 22 a + 11\right)\cdot 29^{3} + \left(10 a^{5} + 6 a^{4} + 14 a^{3} + 5 a^{2} + 16 a + 18\right)\cdot 29^{4} + \left(15 a^{5} + 12 a^{4} + 16 a^{3} + 5 a^{2} + 27 a + 5\right)\cdot 29^{5} + \left(19 a^{5} + 16 a^{4} + 16 a^{3} + 27 a^{2} + 3 a + 12\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 5 }$ | $=$ | \( 3 a^{5} + 5 a^{4} + 26 a^{3} + 21 a^{2} + 7 a + 10 + \left(18 a^{5} + 8 a^{4} + 5 a^{3} + 12 a + 7\right)\cdot 29 + \left(25 a^{4} + 10 a^{3} + 19 a^{2} + 2 a + 3\right)\cdot 29^{2} + \left(20 a^{5} + 15 a^{4} + 8 a^{3} + 9 a^{2} + 22 a + 14\right)\cdot 29^{3} + \left(12 a^{5} + 2 a^{4} + 4 a^{3} + 4 a^{2} + 3 a + 28\right)\cdot 29^{4} + \left(12 a^{5} + 5 a^{4} + 27 a^{3} + 6 a^{2} + 26 a + 17\right)\cdot 29^{5} + \left(11 a^{5} + 7 a^{4} + 9 a^{3} + 28 a^{2} + 19 a + 2\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 6 }$ | $=$ | \( 16 a^{5} + 7 a^{4} + 15 a^{3} + 13 a^{2} + 18 a + 18 + \left(12 a^{5} + 10 a^{4} + 14 a^{3} + 17 a^{2} + 15 a + 5\right)\cdot 29 + \left(23 a^{5} + 26 a^{4} + 19 a^{3} + 2 a^{2} + 10 a + 28\right)\cdot 29^{2} + \left(25 a^{5} + 25 a^{4} + 22 a^{3} + 24 a^{2} + 5 a + 3\right)\cdot 29^{3} + \left(14 a^{5} + 15 a^{4} + 7 a^{3} + 8 a^{2} + 28 a + 5\right)\cdot 29^{4} + \left(18 a^{5} + 27 a^{4} + 27 a^{3} + 4 a^{2} + 13 a + 2\right)\cdot 29^{5} + \left(2 a^{5} + 10 a^{4} + 11 a^{3} + 2 a^{2} + 7 a + 13\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 7 }$ | $=$ | \( 15 a^{5} + 19 a^{4} + 20 a^{3} + 2 a^{2} + 2 a + 8 + \left(2 a^{5} + a^{4} + 23 a^{3} + 22 a^{2} + 8 a\right)\cdot 29 + \left(a^{5} + 2 a^{4} + 24 a^{3} + 4 a^{2} + 16 a + 9\right)\cdot 29^{2} + \left(25 a^{5} + 15 a^{4} + a^{3} + 12 a^{2} + a + 6\right)\cdot 29^{3} + \left(15 a^{5} + 23 a^{4} + 9 a^{3} + 18 a^{2} + 21 a\right)\cdot 29^{4} + \left(5 a^{5} + a^{4} + 28 a^{3} + 24 a^{2} + 23 a + 4\right)\cdot 29^{5} + \left(12 a^{5} + 24 a^{4} + 24 a^{3} + 12 a + 21\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 8 }$ | $=$ | \( 21 a^{5} + 18 a^{4} + 8 a^{3} + 23 a^{2} + 2 a + 26 + \left(6 a^{5} + 7 a^{4} + 28 a^{3} + 26 a^{2} + 23 a + 19\right)\cdot 29 + \left(6 a^{5} + 18 a^{4} + 20 a^{3} + 20 a^{2} + 19 a + 20\right)\cdot 29^{2} + \left(17 a^{5} + 17 a^{4} + 5 a^{3} + 16 a^{2} + 2 a + 12\right)\cdot 29^{3} + \left(27 a^{5} + 25 a^{4} + 4 a^{3} + 16 a + 3\right)\cdot 29^{4} + \left(11 a^{5} + 25 a^{4} + 11 a^{3} + 24 a^{2} + 22 a + 14\right)\cdot 29^{5} + \left(12 a^{5} + 10 a^{4} + 24 a^{3} + 14 a^{2} + 7 a + 11\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 9 }$ | $=$ | \( 26 a^{5} + 10 a^{4} + 17 a^{3} + 8 a + 17 + \left(16 a^{5} + 7 a^{4} + 4 a^{3} + 26 a^{2} + 24 a\right)\cdot 29 + \left(21 a^{5} + 19 a^{4} + 10 a^{3} + a^{2} + 15 a + 12\right)\cdot 29^{2} + \left(2 a^{5} + 4 a^{4} + 3 a^{3} + 12 a^{2} + 25 a + 17\right)\cdot 29^{3} + \left(20 a^{5} + 19 a^{4} + 19 a^{3} + 2 a^{2} + 8 a + 20\right)\cdot 29^{4} + \left(16 a^{5} + 10 a^{4} + 17 a^{3} + 27 a^{2} + 16 a + 26\right)\cdot 29^{5} + \left(26 a^{5} + 12 a^{4} + 2 a^{3} + 27 a^{2} + 27 a + 4\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 10 }$ | $=$ | \( 19 a^{5} + 22 a^{4} + 17 a^{3} + 9 a^{2} + 22 a + 18 + \left(15 a^{5} + 26 a^{4} + 21 a^{3} + 9 a^{2} + 3 a + 14\right)\cdot 29 + \left(12 a^{5} + 6 a^{4} + 26 a^{3} + 3 a^{2} + 9 a + 16\right)\cdot 29^{2} + \left(15 a^{5} + 15 a^{4} + 19 a^{3} + 14 a^{2} + 7 a + 15\right)\cdot 29^{3} + \left(25 a^{5} + 28 a^{4} + 3 a^{3} + 9 a^{2} + 21 a + 8\right)\cdot 29^{4} + \left(11 a^{5} + 5 a^{4} + 25 a^{3} + 14 a^{2} + 21 a + 5\right)\cdot 29^{5} + \left(21 a^{5} + 24 a^{4} + 18 a^{3} + 9 a^{2} + 3 a\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 11 }$ | $=$ | \( a^{5} + 11 a^{4} + 18 a^{3} + 5 a^{2} + 24 a + 6 + \left(20 a^{4} + a^{3} + 15 a^{2} + 22 a + 22\right)\cdot 29 + \left(15 a^{5} + 4 a^{4} + 17 a^{3} + 4 a^{2} + 3 a + 20\right)\cdot 29^{2} + \left(28 a^{5} + 10 a^{4} + 22 a^{3} + 4 a^{2} + 27 a + 8\right)\cdot 29^{3} + \left(6 a^{5} + 21 a^{4} + 13 a^{3} + 6 a^{2} + 19 a + 3\right)\cdot 29^{4} + \left(27 a^{5} + 26 a^{4} + 2 a^{3} + 7 a^{2} + 7\right)\cdot 29^{5} + \left(7 a^{5} + 10 a^{4} + 2 a^{3} + 27 a^{2} + 24 a + 7\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 12 }$ | $=$ | \( 7 a^{5} + 27 a^{4} + 5 a^{3} + 27 a^{2} + 11 a + 20 + \left(14 a^{5} + 11 a^{4} + 14 a^{3} + 13 a^{2} + 24 a + 1\right)\cdot 29 + \left(25 a^{5} + 16 a^{4} + 17 a^{2} + 13 a + 11\right)\cdot 29^{2} + \left(13 a^{5} + 16 a^{4} + 5 a^{3} + 28 a^{2} + 23 a + 4\right)\cdot 29^{3} + \left(14 a^{5} + 24 a^{3} + 11 a^{2} + 14 a + 20\right)\cdot 29^{4} + \left(2 a^{5} + 5 a^{4} + 5 a^{3} + 28 a^{2} + 18 a + 6\right)\cdot 29^{5} + \left(24 a^{5} + 18 a^{4} + 27 a^{3} + 26 a^{2} + 16 a + 12\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 13 }$ | $=$ | \( 8 a^{5} + 16 a^{4} + 6 a^{3} + 10 a^{2} + 13 a + 8 + \left(5 a^{5} + 20 a^{4} + 9 a^{3} + 2 a^{2} + 25 a + 12\right)\cdot 29 + \left(25 a^{5} + 3 a^{4} + 16 a^{3} + 9 a^{2} + 6 a\right)\cdot 29^{2} + \left(5 a^{5} + 11 a^{4} + 6 a^{3} + 19 a^{2} + 9 a + 8\right)\cdot 29^{3} + \left(7 a^{5} + 5 a^{4} + 12 a^{3} + 4 a^{2} + 23 a + 9\right)\cdot 29^{4} + \left(19 a^{5} + 4 a^{4} + 3 a^{3} + 11 a^{2} + 23 a + 17\right)\cdot 29^{5} + \left(25 a^{5} + 21 a^{4} + 23 a^{3} + 7 a^{2} + 5 a + 26\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 14 }$ | $=$ | \( 25 a^{5} + 16 a^{4} + 28 a^{3} + 10 a^{2} + 28 a + 26 + \left(19 a^{5} + 20 a^{4} + 10 a^{3} + 21 a^{2} + 5\right)\cdot 29 + \left(15 a^{5} + 19 a^{4} + 21 a^{3} + 20 a^{2} + 21 a\right)\cdot 29^{2} + \left(7 a^{5} + 25 a^{4} + 10 a^{3} + 7 a^{2} + 12 a + 16\right)\cdot 29^{3} + \left(3 a^{5} + 15 a^{4} + 27 a^{3} + 14 a^{2} + 21 a + 13\right)\cdot 29^{4} + \left(13 a^{5} + 3 a^{4} + 12 a^{2} + 21 a + 2\right)\cdot 29^{5} + \left(6 a^{5} + 7 a^{4} + 12 a^{3} + 12 a^{2} + 25 a\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 15 }$ | $=$ | \( 21 a^{5} + 8 a^{4} + 8 a^{3} + 13 a^{2} + 5 a + 19 + \left(6 a^{5} + 10 a^{3} + 17 a^{2} + 5 a + 10\right)\cdot 29 + \left(17 a^{5} + 24 a^{4} + 22 a^{3} + 7 a + 13\right)\cdot 29^{2} + \left(28 a^{5} + 12 a^{4} + 19 a^{2} + 6 a + 2\right)\cdot 29^{3} + \left(12 a^{5} + 26 a^{4} + 15 a^{3} + 17 a^{2} + 25 a\right)\cdot 29^{4} + \left(20 a^{5} + 11 a^{4} + 25 a^{3} + 16 a^{2} + 7 a + 1\right)\cdot 29^{5} + \left(3 a^{5} + 11 a^{4} + 28 a^{3} + 23 a^{2} + 7 a + 28\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 16 }$ | $=$ | \( 13 a^{5} + 4 a^{4} + 28 a^{3} + 14 a^{2} + 14 a + 24 + \left(4 a^{5} + 25 a^{4} + 2 a^{3} + 17 a^{2} + 6 a + 23\right)\cdot 29 + \left(8 a^{5} + 24 a^{4} + 13 a^{3} + 8 a^{2} + 16 a + 6\right)\cdot 29^{2} + \left(9 a^{5} + 14 a^{4} + 14 a^{3} + 22 a^{2} + 25 a + 7\right)\cdot 29^{3} + \left(26 a^{5} + 6 a^{4} + 22 a^{3} + 4 a^{2} + 16\right)\cdot 29^{4} + \left(21 a^{5} + 10 a^{4} + 2 a^{3} + 16 a^{2} + 6 a + 1\right)\cdot 29^{5} + \left(9 a^{5} + 14 a^{4} + 18 a^{3} + 20 a^{2} + 9 a + 12\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 17 }$ | $=$ | \( 19 a^{5} + 9 a^{4} + 13 a^{3} + 3 a^{2} + 13 a + 26 + \left(17 a^{5} + 5 a^{4} + 21 a^{3} + 27 a^{2} + 26 a + 23\right)\cdot 29 + \left(9 a^{5} + 9 a^{4} + 3 a^{3} + 17 a^{2} + 20 a + 24\right)\cdot 29^{2} + \left(25 a^{5} + 27 a^{4} + 18 a^{2} + 11 a + 25\right)\cdot 29^{3} + \left(23 a^{5} + 21 a^{4} + 26 a^{3} + 23 a^{2} + 20 a + 18\right)\cdot 29^{4} + \left(3 a^{5} + 21 a^{4} + 4 a^{3} + 11 a^{2} + 15 a + 5\right)\cdot 29^{5} + \left(8 a^{5} + 28 a^{4} + 18 a^{3} + a^{2} + 7\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 18 }$ | $=$ | \( 28 a^{5} + 14 a^{4} + 6 a^{3} + 3 a + 4 + \left(5 a^{5} + 26 a^{4} + 25 a^{3} + 4 a^{2} + 3 a + 2\right)\cdot 29 + \left(16 a^{5} + 24 a^{4} + 25 a^{3} + 6 a^{2} + 23 a + 13\right)\cdot 29^{2} + \left(23 a^{5} + 2 a^{4} + 24 a^{3} + 28 a^{2} + 20 a + 24\right)\cdot 29^{3} + \left(18 a^{5} + 8 a^{4} + 25 a^{3} + a^{2} + 9 a + 4\right)\cdot 29^{4} + \left(19 a^{5} + 17 a^{4} + 16 a^{3} + 9 a^{2} + 24 a + 5\right)\cdot 29^{5} + \left(15 a^{5} + 19 a^{4} + 2 a^{3} + a^{2} + 3 a + 13\right)\cdot 29^{6} +O(29^{7})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 18 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 18 }$ | Character values | |
$c1$ | $c2$ | |||
$1$ | $1$ | $()$ | $2$ | $2$ |
$1$ | $2$ | $(1,3)(2,6)(4,5)(7,10)(8,12)(9,17)(11,15)(13,16)(14,18)$ | $-2$ | $-2$ |
$3$ | $2$ | $(1,3)(2,6)(4,5)(7,16)(8,18)(9,11)(10,13)(12,14)(15,17)$ | $0$ | $0$ |
$3$ | $2$ | $(1,13)(2,11)(3,16)(4,12)(5,8)(6,15)$ | $0$ | $0$ |
$1$ | $3$ | $(1,5,6)(2,3,4)(7,14,9)(8,15,13)(10,18,17)(11,16,12)$ | $2 \zeta_{3}$ | $-2 \zeta_{3} - 2$ |
$1$ | $3$ | $(1,6,5)(2,4,3)(7,9,14)(8,13,15)(10,17,18)(11,12,16)$ | $-2 \zeta_{3} - 2$ | $2 \zeta_{3}$ |
$2$ | $3$ | $(1,7,13)(2,17,11)(3,10,16)(4,18,12)(5,14,8)(6,9,15)$ | $-1$ | $-1$ |
$2$ | $3$ | $(1,14,15)(2,10,12)(3,18,11)(4,17,16)(5,9,13)(6,7,8)$ | $-\zeta_{3}$ | $\zeta_{3} + 1$ |
$2$ | $3$ | $(1,15,14)(2,12,10)(3,11,18)(4,16,17)(5,13,9)(6,8,7)$ | $\zeta_{3} + 1$ | $-\zeta_{3}$ |
$1$ | $6$ | $(1,2,5,3,6,4)(7,17,14,10,9,18)(8,16,15,12,13,11)$ | $2 \zeta_{3} + 2$ | $-2 \zeta_{3}$ |
$1$ | $6$ | $(1,4,6,3,5,2)(7,18,9,10,14,17)(8,11,13,12,15,16)$ | $-2 \zeta_{3}$ | $2 \zeta_{3} + 2$ |
$2$ | $6$ | $(1,16,7,3,13,10)(2,15,17,6,11,9)(4,8,18,5,12,14)$ | $1$ | $1$ |
$2$ | $6$ | $(1,11,14,3,15,18)(2,8,10,6,12,7)(4,13,17,5,16,9)$ | $-\zeta_{3} - 1$ | $\zeta_{3}$ |
$2$ | $6$ | $(1,18,15,3,14,11)(2,7,12,6,10,8)(4,9,16,5,17,13)$ | $\zeta_{3}$ | $-\zeta_{3} - 1$ |
$3$ | $6$ | $(1,2,5,3,6,4)(7,11,14,16,9,12)(8,10,15,18,13,17)$ | $0$ | $0$ |
$3$ | $6$ | $(1,4,6,3,5,2)(7,12,9,16,14,11)(8,17,13,18,15,10)$ | $0$ | $0$ |
$3$ | $6$ | $(1,15,5,13,6,8)(2,12,3,11,4,16)(7,9,14)(10,17,18)$ | $0$ | $0$ |
$3$ | $6$ | $(1,8,6,13,5,15)(2,16,4,11,3,12)(7,14,9)(10,18,17)$ | $0$ | $0$ |