Properties

Label 2.2e9_5e2.8t8.2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{9} \cdot 5^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$12800= 2^{9} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 30 x^{4} - 25 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 14.
Roots:
$r_{ 1 }$ $=$ $ 4 + 3\cdot 37 + 37^{2} + 11\cdot 37^{3} + 7\cdot 37^{4} + 34\cdot 37^{5} + 31\cdot 37^{6} + 5\cdot 37^{7} + 5\cdot 37^{8} + 11\cdot 37^{9} + 3\cdot 37^{10} + 2\cdot 37^{11} + 29\cdot 37^{12} + 9\cdot 37^{13} +O\left(37^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 5 + 9\cdot 37 + 36\cdot 37^{2} + 9\cdot 37^{3} + 17\cdot 37^{4} + 9\cdot 37^{5} + 13\cdot 37^{6} + 30\cdot 37^{7} + 24\cdot 37^{8} + 17\cdot 37^{9} + 21\cdot 37^{10} + 32\cdot 37^{11} + 9\cdot 37^{12} + 13\cdot 37^{13} +O\left(37^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 7 + 4\cdot 37 + 12\cdot 37^{2} + 33\cdot 37^{4} + 17\cdot 37^{6} + 11\cdot 37^{7} + 35\cdot 37^{8} + 13\cdot 37^{9} + 2\cdot 37^{10} + 29\cdot 37^{11} + 8\cdot 37^{12} + 19\cdot 37^{13} +O\left(37^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 13 + 6\cdot 37 + 12\cdot 37^{2} + 36\cdot 37^{3} + 16\cdot 37^{4} + 15\cdot 37^{5} + 15\cdot 37^{6} + 20\cdot 37^{7} + 25\cdot 37^{8} + 29\cdot 37^{9} + 32\cdot 37^{10} + 30\cdot 37^{11} + 5\cdot 37^{12} + 28\cdot 37^{13} +O\left(37^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 24 + 30\cdot 37 + 24\cdot 37^{2} + 20\cdot 37^{4} + 21\cdot 37^{5} + 21\cdot 37^{6} + 16\cdot 37^{7} + 11\cdot 37^{8} + 7\cdot 37^{9} + 4\cdot 37^{10} + 6\cdot 37^{11} + 31\cdot 37^{12} + 8\cdot 37^{13} +O\left(37^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 30 + 32\cdot 37 + 24\cdot 37^{2} + 36\cdot 37^{3} + 3\cdot 37^{4} + 36\cdot 37^{5} + 19\cdot 37^{6} + 25\cdot 37^{7} + 37^{8} + 23\cdot 37^{9} + 34\cdot 37^{10} + 7\cdot 37^{11} + 28\cdot 37^{12} + 17\cdot 37^{13} +O\left(37^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 32 + 27\cdot 37 + 27\cdot 37^{3} + 19\cdot 37^{4} + 27\cdot 37^{5} + 23\cdot 37^{6} + 6\cdot 37^{7} + 12\cdot 37^{8} + 19\cdot 37^{9} + 15\cdot 37^{10} + 4\cdot 37^{11} + 27\cdot 37^{12} + 23\cdot 37^{13} +O\left(37^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 33 + 33\cdot 37 + 35\cdot 37^{2} + 25\cdot 37^{3} + 29\cdot 37^{4} + 2\cdot 37^{5} + 5\cdot 37^{6} + 31\cdot 37^{7} + 31\cdot 37^{8} + 25\cdot 37^{9} + 33\cdot 37^{10} + 34\cdot 37^{11} + 7\cdot 37^{12} + 27\cdot 37^{13} +O\left(37^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,5,6,8,2,4,3)$
$(1,6,8,3)(2,5,7,4)$
$(1,5,8,4)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$4$ $2$ $(1,5)(2,7)(4,8)$ $0$ $0$
$2$ $4$ $(1,5,8,4)(2,3,7,6)$ $0$ $0$
$4$ $4$ $(1,3,8,6)(2,4,7,5)$ $0$ $0$
$2$ $8$ $(1,7,5,6,8,2,4,3)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,2,5,3,8,7,4,6)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.