Properties

Label 2.2e9_5e2.8t8.1c1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{9} \cdot 5^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$12800= 2^{9} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 50 x^{4} - 625 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 15.
Roots:
$r_{ 1 }$ $=$ $ 3 + 36\cdot 41 + 38\cdot 41^{2} + 15\cdot 41^{3} + 36\cdot 41^{4} + 10\cdot 41^{5} + 37\cdot 41^{6} + 17\cdot 41^{7} + 17\cdot 41^{8} + 6\cdot 41^{9} + 23\cdot 41^{10} + 31\cdot 41^{12} + 11\cdot 41^{13} +O\left(41^{ 15 }\right)$
$r_{ 2 }$ $=$ $ 4 + 15\cdot 41^{2} + 17\cdot 41^{3} + 37\cdot 41^{4} + 3\cdot 41^{5} + 24\cdot 41^{6} + 17\cdot 41^{7} + 29\cdot 41^{8} + 12\cdot 41^{9} + 28\cdot 41^{10} + 18\cdot 41^{11} + 7\cdot 41^{12} + 38\cdot 41^{13} + 5\cdot 41^{14} +O\left(41^{ 15 }\right)$
$r_{ 3 }$ $=$ $ 5 + 4\cdot 41 + 15\cdot 41^{2} + 27\cdot 41^{3} + 5\cdot 41^{4} + 19\cdot 41^{5} + 25\cdot 41^{6} + 7\cdot 41^{7} + 37\cdot 41^{8} + 9\cdot 41^{9} + 14\cdot 41^{10} + 33\cdot 41^{11} + 36\cdot 41^{13} + 2\cdot 41^{14} +O\left(41^{ 15 }\right)$
$r_{ 4 }$ $=$ $ 14 + 17\cdot 41 + 2\cdot 41^{2} + 18\cdot 41^{3} + 6\cdot 41^{4} + 39\cdot 41^{5} + 32\cdot 41^{6} + 28\cdot 41^{7} + 11\cdot 41^{8} + 14\cdot 41^{9} + 7\cdot 41^{10} + 16\cdot 41^{11} + 19\cdot 41^{12} + 21\cdot 41^{13} + 9\cdot 41^{14} +O\left(41^{ 15 }\right)$
$r_{ 5 }$ $=$ $ 27 + 23\cdot 41 + 38\cdot 41^{2} + 22\cdot 41^{3} + 34\cdot 41^{4} + 41^{5} + 8\cdot 41^{6} + 12\cdot 41^{7} + 29\cdot 41^{8} + 26\cdot 41^{9} + 33\cdot 41^{10} + 24\cdot 41^{11} + 21\cdot 41^{12} + 19\cdot 41^{13} + 31\cdot 41^{14} +O\left(41^{ 15 }\right)$
$r_{ 6 }$ $=$ $ 36 + 36\cdot 41 + 25\cdot 41^{2} + 13\cdot 41^{3} + 35\cdot 41^{4} + 21\cdot 41^{5} + 15\cdot 41^{6} + 33\cdot 41^{7} + 3\cdot 41^{8} + 31\cdot 41^{9} + 26\cdot 41^{10} + 7\cdot 41^{11} + 40\cdot 41^{12} + 4\cdot 41^{13} + 38\cdot 41^{14} +O\left(41^{ 15 }\right)$
$r_{ 7 }$ $=$ $ 37 + 40\cdot 41 + 25\cdot 41^{2} + 23\cdot 41^{3} + 3\cdot 41^{4} + 37\cdot 41^{5} + 16\cdot 41^{6} + 23\cdot 41^{7} + 11\cdot 41^{8} + 28\cdot 41^{9} + 12\cdot 41^{10} + 22\cdot 41^{11} + 33\cdot 41^{12} + 2\cdot 41^{13} + 35\cdot 41^{14} +O\left(41^{ 15 }\right)$
$r_{ 8 }$ $=$ $ 38 + 4\cdot 41 + 2\cdot 41^{2} + 25\cdot 41^{3} + 4\cdot 41^{4} + 30\cdot 41^{5} + 3\cdot 41^{6} + 23\cdot 41^{7} + 23\cdot 41^{8} + 34\cdot 41^{9} + 17\cdot 41^{10} + 40\cdot 41^{11} + 9\cdot 41^{12} + 29\cdot 41^{13} + 40\cdot 41^{14} +O\left(41^{ 15 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,2,4,6,8,7,5,3)$
$(1,6,8,3)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,4)(2,7)(5,8)$$0$
$2$$4$$(1,4,8,5)(2,6,7,3)$$0$
$4$$4$$(1,6,8,3)(2,5,7,4)$$0$
$2$$8$$(1,3,5,7,8,6,4,2)$$-\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,6,5,2,8,3,4,7)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.