Properties

Label 2.2e9_3e2.8t8.7c1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{9} \cdot 3^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$4608= 2^{9} \cdot 3^{2} $
Artin number field: Splitting field of $f= x^{8} + 24 x^{6} + 210 x^{4} + 792 x^{2} + 1083 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Even
Determinant: 1.2e2_3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 12.
Roots:
$r_{ 1 }$ $=$ $ 3 + 104\cdot 191 + 138\cdot 191^{2} + 168\cdot 191^{3} + 51\cdot 191^{4} + 28\cdot 191^{5} + 65\cdot 191^{6} + 88\cdot 191^{7} + 47\cdot 191^{8} + 84\cdot 191^{9} + 39\cdot 191^{10} + 179\cdot 191^{11} +O\left(191^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 19 + 74\cdot 191 + 122\cdot 191^{2} + 87\cdot 191^{3} + 5\cdot 191^{4} + 58\cdot 191^{5} + 190\cdot 191^{6} + 17\cdot 191^{7} + 49\cdot 191^{8} + 100\cdot 191^{9} + 144\cdot 191^{10} + 38\cdot 191^{11} +O\left(191^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 38 + 118\cdot 191 + 16\cdot 191^{2} + 154\cdot 191^{3} + 174\cdot 191^{4} + 145\cdot 191^{5} + 95\cdot 191^{6} + 107\cdot 191^{7} + 161\cdot 191^{8} + 14\cdot 191^{9} + 69\cdot 191^{10} + 120\cdot 191^{11} +O\left(191^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 40 + 136\cdot 191 + 8\cdot 191^{2} + 54\cdot 191^{3} + 175\cdot 191^{4} + 128\cdot 191^{5} + 187\cdot 191^{6} + 133\cdot 191^{7} + 105\cdot 191^{8} + 6\cdot 191^{9} + 61\cdot 191^{10} + 36\cdot 191^{11} +O\left(191^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 151 + 54\cdot 191 + 182\cdot 191^{2} + 136\cdot 191^{3} + 15\cdot 191^{4} + 62\cdot 191^{5} + 3\cdot 191^{6} + 57\cdot 191^{7} + 85\cdot 191^{8} + 184\cdot 191^{9} + 129\cdot 191^{10} + 154\cdot 191^{11} +O\left(191^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 153 + 72\cdot 191 + 174\cdot 191^{2} + 36\cdot 191^{3} + 16\cdot 191^{4} + 45\cdot 191^{5} + 95\cdot 191^{6} + 83\cdot 191^{7} + 29\cdot 191^{8} + 176\cdot 191^{9} + 121\cdot 191^{10} + 70\cdot 191^{11} +O\left(191^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 172 + 116\cdot 191 + 68\cdot 191^{2} + 103\cdot 191^{3} + 185\cdot 191^{4} + 132\cdot 191^{5} + 173\cdot 191^{7} + 141\cdot 191^{8} + 90\cdot 191^{9} + 46\cdot 191^{10} + 152\cdot 191^{11} +O\left(191^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 188 + 86\cdot 191 + 52\cdot 191^{2} + 22\cdot 191^{3} + 139\cdot 191^{4} + 162\cdot 191^{5} + 125\cdot 191^{6} + 102\cdot 191^{7} + 143\cdot 191^{8} + 106\cdot 191^{9} + 151\cdot 191^{10} + 11\cdot 191^{11} +O\left(191^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,2,8,7)(3,5,6,4)$
$(2,7)(3,4)(5,6)$
$(1,6,8,3)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(2,7)(3,4)(5,6)$$0$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
$4$$4$$(1,6,8,3)(2,5,7,4)$$0$
$2$$8$$(1,5,2,6,8,4,7,3)$$-\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,4,2,3,8,5,7,6)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.