Properties

Label 2.2e9_3e2.8t8.5c2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{9} \cdot 3^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$4608= 2^{9} \cdot 3^{2} $
Artin number field: Splitting field of $f= x^{8} + 12 x^{6} + 30 x^{4} + 24 x^{2} + 6 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Even
Determinant: 1.2e3_3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 14.
Roots:
$r_{ 1 }$ $=$ $ 1 + 5\cdot 73 + 47\cdot 73^{2} + 20\cdot 73^{3} + 5\cdot 73^{4} + 12\cdot 73^{5} + 32\cdot 73^{6} + 66\cdot 73^{7} + 67\cdot 73^{8} + 61\cdot 73^{9} + 58\cdot 73^{10} + 66\cdot 73^{11} + 73^{12} + 57\cdot 73^{13} +O\left(73^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 2 + 31\cdot 73 + 40\cdot 73^{2} + 27\cdot 73^{3} + 45\cdot 73^{4} + 32\cdot 73^{5} + 56\cdot 73^{6} + 55\cdot 73^{7} + 44\cdot 73^{8} + 23\cdot 73^{9} + 67\cdot 73^{10} + 21\cdot 73^{11} + 13\cdot 73^{12} + 55\cdot 73^{13} +O\left(73^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 18 + 48\cdot 73 + 60\cdot 73^{2} + 49\cdot 73^{3} + 34\cdot 73^{4} + 41\cdot 73^{5} + 52\cdot 73^{6} + 72\cdot 73^{7} + 35\cdot 73^{8} + 53\cdot 73^{9} + 62\cdot 73^{10} + 23\cdot 73^{11} + 42\cdot 73^{12} + 35\cdot 73^{13} +O\left(73^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 30 + 21\cdot 73 + 38\cdot 73^{2} + 11\cdot 73^{3} + 31\cdot 73^{4} + 49\cdot 73^{5} + 38\cdot 73^{6} + 3\cdot 73^{7} + 37\cdot 73^{8} + 39\cdot 73^{9} + 54\cdot 73^{10} + 43\cdot 73^{11} + 14\cdot 73^{12} + 43\cdot 73^{13} +O\left(73^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 43 + 51\cdot 73 + 34\cdot 73^{2} + 61\cdot 73^{3} + 41\cdot 73^{4} + 23\cdot 73^{5} + 34\cdot 73^{6} + 69\cdot 73^{7} + 35\cdot 73^{8} + 33\cdot 73^{9} + 18\cdot 73^{10} + 29\cdot 73^{11} + 58\cdot 73^{12} + 29\cdot 73^{13} +O\left(73^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 55 + 24\cdot 73 + 12\cdot 73^{2} + 23\cdot 73^{3} + 38\cdot 73^{4} + 31\cdot 73^{5} + 20\cdot 73^{6} + 37\cdot 73^{8} + 19\cdot 73^{9} + 10\cdot 73^{10} + 49\cdot 73^{11} + 30\cdot 73^{12} + 37\cdot 73^{13} +O\left(73^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 71 + 41\cdot 73 + 32\cdot 73^{2} + 45\cdot 73^{3} + 27\cdot 73^{4} + 40\cdot 73^{5} + 16\cdot 73^{6} + 17\cdot 73^{7} + 28\cdot 73^{8} + 49\cdot 73^{9} + 5\cdot 73^{10} + 51\cdot 73^{11} + 59\cdot 73^{12} + 17\cdot 73^{13} +O\left(73^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 72 + 67\cdot 73 + 25\cdot 73^{2} + 52\cdot 73^{3} + 67\cdot 73^{4} + 60\cdot 73^{5} + 40\cdot 73^{6} + 6\cdot 73^{7} + 5\cdot 73^{8} + 11\cdot 73^{9} + 14\cdot 73^{10} + 6\cdot 73^{11} + 71\cdot 73^{12} + 15\cdot 73^{13} +O\left(73^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,7)(5,8)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,8,2)(3,5,6,4)$
$(1,4,8,5)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,4)(2,7)(5,8)$$0$
$2$$4$$(1,4,8,5)(2,3,7,6)$$0$
$4$$4$$(1,7,8,2)(3,5,6,4)$$0$
$2$$8$$(1,2,4,3,8,7,5,6)$$\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,7,4,6,8,2,5,3)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.