Properties

Label 2.2e9_3e2.8t8.2c1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{9} \cdot 3^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$4608= 2^{9} \cdot 3^{2} $
Artin number field: Splitting field of $f= x^{8} - 12 x^{6} + 54 x^{4} - 72 x^{2} - 18 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.2e3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 227 }$ to precision 10.
Roots:
$r_{ 1 }$ $=$ $ 15 + 3\cdot 227 + 158\cdot 227^{2} + 37\cdot 227^{3} + 222\cdot 227^{4} + 73\cdot 227^{5} + 43\cdot 227^{6} + 54\cdot 227^{7} + 135\cdot 227^{8} + 153\cdot 227^{9} +O\left(227^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 59 + 125\cdot 227 + 220\cdot 227^{2} + 116\cdot 227^{3} + 125\cdot 227^{4} + 156\cdot 227^{5} + 87\cdot 227^{6} + 52\cdot 227^{7} + 50\cdot 227^{8} + 153\cdot 227^{9} +O\left(227^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 73 + 226\cdot 227 + 22\cdot 227^{2} + 110\cdot 227^{3} + 4\cdot 227^{4} + 209\cdot 227^{5} + 168\cdot 227^{6} + 148\cdot 227^{7} + 198\cdot 227^{8} + 166\cdot 227^{9} +O\left(227^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 113 + 35\cdot 227 + 170\cdot 227^{2} + 82\cdot 227^{3} + 12\cdot 227^{4} + 223\cdot 227^{5} + 104\cdot 227^{6} + 75\cdot 227^{7} + 94\cdot 227^{8} + 39\cdot 227^{9} +O\left(227^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 114 + 191\cdot 227 + 56\cdot 227^{2} + 144\cdot 227^{3} + 214\cdot 227^{4} + 3\cdot 227^{5} + 122\cdot 227^{6} + 151\cdot 227^{7} + 132\cdot 227^{8} + 187\cdot 227^{9} +O\left(227^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 154 + 204\cdot 227^{2} + 116\cdot 227^{3} + 222\cdot 227^{4} + 17\cdot 227^{5} + 58\cdot 227^{6} + 78\cdot 227^{7} + 28\cdot 227^{8} + 60\cdot 227^{9} +O\left(227^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 168 + 101\cdot 227 + 6\cdot 227^{2} + 110\cdot 227^{3} + 101\cdot 227^{4} + 70\cdot 227^{5} + 139\cdot 227^{6} + 174\cdot 227^{7} + 176\cdot 227^{8} + 73\cdot 227^{9} +O\left(227^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 212 + 223\cdot 227 + 68\cdot 227^{2} + 189\cdot 227^{3} + 4\cdot 227^{4} + 153\cdot 227^{5} + 183\cdot 227^{6} + 172\cdot 227^{7} + 91\cdot 227^{8} + 73\cdot 227^{9} +O\left(227^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,8,3)(2,4,7,5)$
$(1,6)(3,8)(4,5)$
$(1,5,6,2,8,4,3,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,6)(3,8)(4,5)$$0$
$2$$4$$(1,6,8,3)(2,4,7,5)$$0$
$4$$4$$(1,4,8,5)(2,3,7,6)$$0$
$2$$8$$(1,5,6,2,8,4,3,7)$$-\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,4,6,7,8,5,3,2)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.