Properties

Label 2.2e9_17.8t8.3
Dimension 2
Group $QD_{16}$
Conductor $ 2^{9} \cdot 17 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$8704= 2^{9} \cdot 17 $
Artin number field: Splitting field of $f= x^{8} + 8 x^{6} + 20 x^{4} + 16 x^{2} - 68 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 199 }$ to precision 10.
Roots:
$r_{ 1 }$ $=$ $ 41 + 164\cdot 199 + 198\cdot 199^{2} + 81\cdot 199^{3} + 38\cdot 199^{4} + 171\cdot 199^{5} + 19\cdot 199^{6} + 147\cdot 199^{7} + 174\cdot 199^{8} + 155\cdot 199^{9} +O\left(199^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 63 + 35\cdot 199 + 68\cdot 199^{2} + 128\cdot 199^{3} + 180\cdot 199^{4} + 106\cdot 199^{5} + 115\cdot 199^{6} + 61\cdot 199^{7} + 198\cdot 199^{8} + 48\cdot 199^{9} +O\left(199^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 87 + 123\cdot 199 + 23\cdot 199^{2} + 9\cdot 199^{3} + 165\cdot 199^{4} + 77\cdot 199^{5} + 53\cdot 199^{6} + 110\cdot 199^{7} + 20\cdot 199^{8} + 26\cdot 199^{9} +O\left(199^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 92 + 157\cdot 199 + 9\cdot 199^{2} + 102\cdot 199^{3} + 25\cdot 199^{4} + 88\cdot 199^{5} + 24\cdot 199^{6} + 22\cdot 199^{7} + 4\cdot 199^{8} + 42\cdot 199^{9} +O\left(199^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 107 + 41\cdot 199 + 189\cdot 199^{2} + 96\cdot 199^{3} + 173\cdot 199^{4} + 110\cdot 199^{5} + 174\cdot 199^{6} + 176\cdot 199^{7} + 194\cdot 199^{8} + 156\cdot 199^{9} +O\left(199^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 112 + 75\cdot 199 + 175\cdot 199^{2} + 189\cdot 199^{3} + 33\cdot 199^{4} + 121\cdot 199^{5} + 145\cdot 199^{6} + 88\cdot 199^{7} + 178\cdot 199^{8} + 172\cdot 199^{9} +O\left(199^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 136 + 163\cdot 199 + 130\cdot 199^{2} + 70\cdot 199^{3} + 18\cdot 199^{4} + 92\cdot 199^{5} + 83\cdot 199^{6} + 137\cdot 199^{7} + 150\cdot 199^{9} +O\left(199^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 158 + 34\cdot 199 + 117\cdot 199^{3} + 160\cdot 199^{4} + 27\cdot 199^{5} + 179\cdot 199^{6} + 51\cdot 199^{7} + 24\cdot 199^{8} + 43\cdot 199^{9} +O\left(199^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(2,7)(4,8)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,8,3)(2,4,7,5)$
$(1,4,8,5)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$4$ $2$ $(1,5)(2,7)(4,8)$ $0$ $0$
$2$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$ $0$
$4$ $4$ $(1,6,8,3)(2,4,7,5)$ $0$ $0$
$2$ $8$ $(1,6,4,2,8,3,5,7)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,3,4,7,8,6,5,2)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.