Properties

Label 2.2e9.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{9}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$512= 2^{9} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{4} - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 6 + 30\cdot 41 + 11\cdot 41^{2} + 19\cdot 41^{3} + 33\cdot 41^{4} + 30\cdot 41^{5} + 21\cdot 41^{6} + 40\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 13 + 38\cdot 41 + 6\cdot 41^{2} + 41^{3} + 40\cdot 41^{5} + 11\cdot 41^{6} + 14\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 16 + 5\cdot 41 + 23\cdot 41^{2} + 5\cdot 41^{3} + 3\cdot 41^{4} + 6\cdot 41^{5} + 41^{6} + 37\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 20 + 12\cdot 41 + 19\cdot 41^{2} + 26\cdot 41^{3} + 26\cdot 41^{4} + 40\cdot 41^{5} + 18\cdot 41^{6} + 15\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 21 + 28\cdot 41 + 21\cdot 41^{2} + 14\cdot 41^{3} + 14\cdot 41^{4} + 22\cdot 41^{6} + 25\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 25 + 35\cdot 41 + 17\cdot 41^{2} + 35\cdot 41^{3} + 37\cdot 41^{4} + 34\cdot 41^{5} + 39\cdot 41^{6} + 3\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 28 + 2\cdot 41 + 34\cdot 41^{2} + 39\cdot 41^{3} + 40\cdot 41^{4} + 29\cdot 41^{6} + 26\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 35 + 10\cdot 41 + 29\cdot 41^{2} + 21\cdot 41^{3} + 7\cdot 41^{4} + 10\cdot 41^{5} + 19\cdot 41^{6} +O\left(41^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,8,2)(3,5,6,4)$
$(1,5,2,3,8,4,7,6)$
$(1,3,8,6)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$4$ $2$ $(1,2)(4,5)(7,8)$ $0$ $0$
$2$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$ $0$
$4$ $4$ $(1,6,8,3)(2,4,7,5)$ $0$ $0$
$2$ $8$ $(1,5,2,3,8,4,7,6)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,4,2,6,8,5,7,3)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.