Properties

Label 2.2e9.8t6.2c1
Dimension 2
Group $D_{8}$
Conductor $ 2^{9}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$512= 2^{9} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{6} + 10 x^{4} - 8 x^{2} + 2 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd
Determinant: 1.2e3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 13 + 28\cdot 137 + 18\cdot 137^{2} + 10\cdot 137^{3} + 59\cdot 137^{4} + 86\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 22 + 59\cdot 137 + 64\cdot 137^{2} + 88\cdot 137^{3} + 18\cdot 137^{4} + 80\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 27 + 44\cdot 137 + 96\cdot 137^{2} + 4\cdot 137^{3} + 133\cdot 137^{4} + 134\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 35 + 69\cdot 137 + 56\cdot 137^{2} + 42\cdot 137^{3} + 64\cdot 137^{4} + 73\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 102 + 67\cdot 137 + 80\cdot 137^{2} + 94\cdot 137^{3} + 72\cdot 137^{4} + 63\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 110 + 92\cdot 137 + 40\cdot 137^{2} + 132\cdot 137^{3} + 3\cdot 137^{4} + 2\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 115 + 77\cdot 137 + 72\cdot 137^{2} + 48\cdot 137^{3} + 118\cdot 137^{4} + 56\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 124 + 108\cdot 137 + 118\cdot 137^{2} + 126\cdot 137^{3} + 77\cdot 137^{4} + 50\cdot 137^{5} +O\left(137^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,3,7,8,5,6,2)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,8)(2,5)(4,7)$
$(1,6,8,3)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,8)(2,5)(4,7)$$0$
$4$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
$2$$8$$(1,4,3,7,8,5,6,2)$$-\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,7,6,4,8,2,3,5)$$\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.