Properties

Label 2.2e9.8t6.1c1
Dimension 2
Group $D_{8}$
Conductor $ 2^{9}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$512= 2^{9} $
Artin number field: Splitting field of $f= x^{8} - 6 x^{4} - 8 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd
Determinant: 1.2e3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 27 + 81\cdot 137 + 51\cdot 137^{2} + 52\cdot 137^{3} + 72\cdot 137^{4} + 48\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 39 + 33\cdot 137 + 49\cdot 137^{2} + 69\cdot 137^{4} + 78\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 44 + 137 + 95\cdot 137^{2} + 113\cdot 137^{3} + 103\cdot 137^{4} + 83\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 46 + 63\cdot 137 + 29\cdot 137^{2} + 11\cdot 137^{3} + 34\cdot 137^{4} + 62\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 91 + 73\cdot 137 + 107\cdot 137^{2} + 125\cdot 137^{3} + 102\cdot 137^{4} + 74\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 93 + 135\cdot 137 + 41\cdot 137^{2} + 23\cdot 137^{3} + 33\cdot 137^{4} + 53\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 98 + 103\cdot 137 + 87\cdot 137^{2} + 136\cdot 137^{3} + 67\cdot 137^{4} + 58\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 110 + 55\cdot 137 + 85\cdot 137^{2} + 84\cdot 137^{3} + 64\cdot 137^{4} + 88\cdot 137^{5} +O\left(137^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6)(3,8)(4,5)$
$(1,2)(3,5)(4,6)(7,8)$
$(1,6,8,3)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$4$$2$$(1,6)(3,8)(4,5)$$0$
$2$$4$$(1,6,8,3)(2,5,7,4)$$0$
$2$$8$$(1,2,6,5,8,7,3,4)$$-\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,5,3,2,8,4,6,7)$$\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.