Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 113 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 17 + 95\cdot 113 + 27\cdot 113^{2} + 35\cdot 113^{3} + 25\cdot 113^{4} + 111\cdot 113^{5} +O\left(113^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 25 + 85\cdot 113 + 44\cdot 113^{2} + 23\cdot 113^{3} + 14\cdot 113^{4} + 92\cdot 113^{5} +O\left(113^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 29 + 100\cdot 113 + 23\cdot 113^{2} + 52\cdot 113^{3} + 102\cdot 113^{4} + 88\cdot 113^{5} +O\left(113^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 36 + 71\cdot 113 + 82\cdot 113^{2} + 91\cdot 113^{3} + 8\cdot 113^{4} + 99\cdot 113^{5} +O\left(113^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 77 + 41\cdot 113 + 30\cdot 113^{2} + 21\cdot 113^{3} + 104\cdot 113^{4} + 13\cdot 113^{5} +O\left(113^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 84 + 12\cdot 113 + 89\cdot 113^{2} + 60\cdot 113^{3} + 10\cdot 113^{4} + 24\cdot 113^{5} +O\left(113^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 88 + 27\cdot 113 + 68\cdot 113^{2} + 89\cdot 113^{3} + 98\cdot 113^{4} + 20\cdot 113^{5} +O\left(113^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 96 + 17\cdot 113 + 85\cdot 113^{2} + 77\cdot 113^{3} + 87\cdot 113^{4} + 113^{5} +O\left(113^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,4)(2,3)(5,8)(6,7)$ |
| $(1,8)(3,6)$ |
| $(1,6,8,3)(2,5,7,4)$ |
| $(1,3,8,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-2$ |
| $2$ | $2$ | $(1,8)(3,6)$ | $0$ |
| $4$ | $2$ | $(1,4)(2,3)(5,8)(6,7)$ | $0$ |
| $1$ | $4$ | $(1,3,8,6)(2,5,7,4)$ | $-2 \zeta_{4}$ |
| $1$ | $4$ | $(1,6,8,3)(2,4,7,5)$ | $2 \zeta_{4}$ |
| $2$ | $4$ | $(1,6,8,3)(2,5,7,4)$ | $0$ |
| $2$ | $4$ | $(1,3,8,6)$ | $-\zeta_{4} + 1$ |
| $2$ | $4$ | $(1,6,8,3)$ | $\zeta_{4} + 1$ |
| $2$ | $4$ | $(1,6,8,3)(2,7)(4,5)$ | $\zeta_{4} - 1$ |
| $2$ | $4$ | $(1,3,8,6)(2,7)(4,5)$ | $-\zeta_{4} - 1$ |
| $4$ | $4$ | $(1,4,8,5)(2,6,7,3)$ | $0$ |
| $4$ | $8$ | $(1,4,3,2,8,5,6,7)$ | $0$ |
| $4$ | $8$ | $(1,2,6,4,8,7,3,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.