Properties

Label 2.2e9.8t17.3
Dimension 2
Group $C_4\wr C_2$
Conductor $ 2^{9}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$512= 2^{9} $
Artin number field: Splitting field of $f= x^{8} + 2 x^{4} + 2 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 113 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 17 + 95\cdot 113 + 27\cdot 113^{2} + 35\cdot 113^{3} + 25\cdot 113^{4} + 111\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 25 + 85\cdot 113 + 44\cdot 113^{2} + 23\cdot 113^{3} + 14\cdot 113^{4} + 92\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 29 + 100\cdot 113 + 23\cdot 113^{2} + 52\cdot 113^{3} + 102\cdot 113^{4} + 88\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 36 + 71\cdot 113 + 82\cdot 113^{2} + 91\cdot 113^{3} + 8\cdot 113^{4} + 99\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 77 + 41\cdot 113 + 30\cdot 113^{2} + 21\cdot 113^{3} + 104\cdot 113^{4} + 13\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 84 + 12\cdot 113 + 89\cdot 113^{2} + 60\cdot 113^{3} + 10\cdot 113^{4} + 24\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 88 + 27\cdot 113 + 68\cdot 113^{2} + 89\cdot 113^{3} + 98\cdot 113^{4} + 20\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 96 + 17\cdot 113 + 85\cdot 113^{2} + 77\cdot 113^{3} + 87\cdot 113^{4} + 113^{5} +O\left(113^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4)(2,3)(5,8)(6,7)$
$(1,8)(3,6)$
$(1,6,8,3)(2,5,7,4)$
$(1,3,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(1,8)(3,6)$ $0$ $0$
$4$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$ $0$
$1$ $4$ $(1,3,8,6)(2,5,7,4)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,6,8,3)(2,4,7,5)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,6,8,3)(2,5,7,4)$ $0$ $0$
$2$ $4$ $(1,3,8,6)$ $\zeta_{4} - 1$ $-\zeta_{4} - 1$
$2$ $4$ $(1,6,8,3)$ $-\zeta_{4} - 1$ $\zeta_{4} - 1$
$2$ $4$ $(1,6,8,3)(2,7)(4,5)$ $-\zeta_{4} + 1$ $\zeta_{4} + 1$
$2$ $4$ $(1,3,8,6)(2,7)(4,5)$ $\zeta_{4} + 1$ $-\zeta_{4} + 1$
$4$ $4$ $(1,4,8,5)(2,6,7,3)$ $0$ $0$
$4$ $8$ $(1,4,3,2,8,5,6,7)$ $0$ $0$
$4$ $8$ $(1,2,6,4,8,7,3,5)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.