Properties

Label 2.2e9.8t17.2c1
Dimension 2
Group $C_4\wr C_2$
Conductor $ 2^{9}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$512= 2^{9} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{4} + 2 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd
Determinant: 1.2e4.4t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 113 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 4\cdot 113 + 54\cdot 113^{2} + 102\cdot 113^{3} + 51\cdot 113^{4} + 95\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 30 + 90\cdot 113 + 11\cdot 113^{2} + 27\cdot 113^{3} + 56\cdot 113^{4} + 36\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 33 + 47\cdot 113 + 88\cdot 113^{2} + 57\cdot 113^{3} + 49\cdot 113^{4} + 43\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 43 + 74\cdot 113 + 9\cdot 113^{2} + 31\cdot 113^{3} + 9\cdot 113^{4} + 59\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 70 + 38\cdot 113 + 103\cdot 113^{2} + 81\cdot 113^{3} + 103\cdot 113^{4} + 53\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 80 + 65\cdot 113 + 24\cdot 113^{2} + 55\cdot 113^{3} + 63\cdot 113^{4} + 69\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 83 + 22\cdot 113 + 101\cdot 113^{2} + 85\cdot 113^{3} + 56\cdot 113^{4} + 76\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 111 + 108\cdot 113 + 58\cdot 113^{2} + 10\cdot 113^{3} + 61\cdot 113^{4} + 17\cdot 113^{5} +O\left(113^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(3,4,6,5)$
$(3,6)(4,5)$
$(1,2,8,7)(3,5,6,4)$
$(1,5,8,4)(2,6,7,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(3,6)(4,5)$$0$
$4$$2$$(1,6)(2,4)(3,8)(5,7)$$0$
$1$$4$$(1,2,8,7)(3,5,6,4)$$2 \zeta_{4}$
$1$$4$$(1,7,8,2)(3,4,6,5)$$-2 \zeta_{4}$
$2$$4$$(3,4,6,5)$$\zeta_{4} - 1$
$2$$4$$(3,5,6,4)$$-\zeta_{4} - 1$
$2$$4$$(1,8)(2,7)(3,5,6,4)$$-\zeta_{4} + 1$
$2$$4$$(1,8)(2,7)(3,4,6,5)$$\zeta_{4} + 1$
$2$$4$$(1,2,8,7)(3,4,6,5)$$0$
$4$$4$$(1,5,8,4)(2,6,7,3)$$0$
$4$$8$$(1,3,2,5,8,6,7,4)$$0$
$4$$8$$(1,5,7,3,8,4,2,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.