Properties

Label 2.2e9.8t17.2
Dimension 2
Group $C_4\wr C_2$
Conductor $ 2^{9}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$512= 2^{9} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{4} + 2 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 113 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 4\cdot 113 + 54\cdot 113^{2} + 102\cdot 113^{3} + 51\cdot 113^{4} + 95\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 30 + 90\cdot 113 + 11\cdot 113^{2} + 27\cdot 113^{3} + 56\cdot 113^{4} + 36\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 33 + 47\cdot 113 + 88\cdot 113^{2} + 57\cdot 113^{3} + 49\cdot 113^{4} + 43\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 43 + 74\cdot 113 + 9\cdot 113^{2} + 31\cdot 113^{3} + 9\cdot 113^{4} + 59\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 70 + 38\cdot 113 + 103\cdot 113^{2} + 81\cdot 113^{3} + 103\cdot 113^{4} + 53\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 80 + 65\cdot 113 + 24\cdot 113^{2} + 55\cdot 113^{3} + 63\cdot 113^{4} + 69\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 83 + 22\cdot 113 + 101\cdot 113^{2} + 85\cdot 113^{3} + 56\cdot 113^{4} + 76\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 111 + 108\cdot 113 + 58\cdot 113^{2} + 10\cdot 113^{3} + 61\cdot 113^{4} + 17\cdot 113^{5} +O\left(113^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(3,4,6,5)$
$(3,6)(4,5)$
$(1,2,8,7)(3,5,6,4)$
$(1,5,8,4)(2,6,7,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(3,6)(4,5)$ $0$ $0$
$4$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $0$ $0$
$1$ $4$ $(1,2,8,7)(3,5,6,4)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,7,8,2)(3,4,6,5)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(3,4,6,5)$ $\zeta_{4} - 1$ $-\zeta_{4} - 1$
$2$ $4$ $(3,5,6,4)$ $-\zeta_{4} - 1$ $\zeta_{4} - 1$
$2$ $4$ $(1,8)(2,7)(3,5,6,4)$ $-\zeta_{4} + 1$ $\zeta_{4} + 1$
$2$ $4$ $(1,8)(2,7)(3,4,6,5)$ $\zeta_{4} + 1$ $-\zeta_{4} + 1$
$2$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$ $0$
$4$ $4$ $(1,5,8,4)(2,6,7,3)$ $0$ $0$
$4$ $8$ $(1,3,2,5,8,6,7,4)$ $0$ $0$
$4$ $8$ $(1,5,7,3,8,4,2,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.