Properties

Label 2.2e8_7e2.4t3.6c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{8} \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$12544= 2^{8} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{4} + 98 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 17 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 6 + 16\cdot 17 + 16\cdot 17^{2} + 9\cdot 17^{4} + 12\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 7 + 9\cdot 17 + 7\cdot 17^{2} + 10\cdot 17^{3} + 4\cdot 17^{4} + 13\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 10 + 7\cdot 17 + 9\cdot 17^{2} + 6\cdot 17^{3} + 12\cdot 17^{4} + 3\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 11 + 16\cdot 17^{3} + 7\cdot 17^{4} + 4\cdot 17^{5} +O\left(17^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.