Properties

Label 2.2e8_7.8t8.1c2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{8} \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$1792= 2^{8} \cdot 7 $
Artin number field: Splitting field of $f= x^{8} + 4 x^{6} + 4 x^{4} - 4 x^{2} - 7 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 2 + 9\cdot 79 + 42\cdot 79^{2} + 18\cdot 79^{3} + 36\cdot 79^{4} + 14\cdot 79^{5} + 55\cdot 79^{6} + 47\cdot 79^{7} +O\left(79^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 6 + 77\cdot 79 + 44\cdot 79^{2} + 47\cdot 79^{3} + 27\cdot 79^{4} + 55\cdot 79^{5} + 57\cdot 79^{6} + 25\cdot 79^{7} +O\left(79^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 8 + 4\cdot 79 + 10\cdot 79^{2} + 5\cdot 79^{3} + 73\cdot 79^{4} + 42\cdot 79^{5} + 7\cdot 79^{6} + 13\cdot 79^{7} +O\left(79^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 34 + 73\cdot 79 + 11\cdot 79^{2} + 6\cdot 79^{3} + 24\cdot 79^{4} + 8\cdot 79^{5} + 17\cdot 79^{6} + 62\cdot 79^{7} +O\left(79^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 45 + 5\cdot 79 + 67\cdot 79^{2} + 72\cdot 79^{3} + 54\cdot 79^{4} + 70\cdot 79^{5} + 61\cdot 79^{6} + 16\cdot 79^{7} +O\left(79^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 71 + 74\cdot 79 + 68\cdot 79^{2} + 73\cdot 79^{3} + 5\cdot 79^{4} + 36\cdot 79^{5} + 71\cdot 79^{6} + 65\cdot 79^{7} +O\left(79^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 73 + 79 + 34\cdot 79^{2} + 31\cdot 79^{3} + 51\cdot 79^{4} + 23\cdot 79^{5} + 21\cdot 79^{6} + 53\cdot 79^{7} +O\left(79^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 77 + 69\cdot 79 + 36\cdot 79^{2} + 60\cdot 79^{3} + 42\cdot 79^{4} + 64\cdot 79^{5} + 23\cdot 79^{6} + 31\cdot 79^{7} +O\left(79^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(2,5)(3,6)(4,7)$
$(1,7,8,2)(3,4,6,5)$
$(1,6,8,3)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(2,5)(3,6)(4,7)$$0$
$2$$4$$(1,6,8,3)(2,5,7,4)$$0$
$4$$4$$(1,7,8,2)(3,4,6,5)$$0$
$2$$8$$(1,4,3,7,8,5,6,2)$$\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,5,3,2,8,4,6,7)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.