Properties

Label 2.2e8_7.4t3.9
Dimension 2
Group $D_4$
Conductor $ 2^{8} \cdot 7 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1792= 2^{8} \cdot 7 $
Artin number field: Splitting field of $f= x^{8} - 12 x^{6} + 24 x^{4} - 12 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 193 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 147\cdot 193 + 110\cdot 193^{2} + 179\cdot 193^{3} + 164\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 + 43\cdot 193 + 16\cdot 193^{2} + 19\cdot 193^{3} + 164\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 55 + 113\cdot 193 + 175\cdot 193^{2} + 18\cdot 193^{3} + 130\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 90 + 179\cdot 193 + 122\cdot 193^{2} + 165\cdot 193^{3} + 99\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 103 + 13\cdot 193 + 70\cdot 193^{2} + 27\cdot 193^{3} + 93\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 138 + 79\cdot 193 + 17\cdot 193^{2} + 174\cdot 193^{3} + 62\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 178 + 149\cdot 193 + 176\cdot 193^{2} + 173\cdot 193^{3} + 28\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 186 + 45\cdot 193 + 82\cdot 193^{2} + 13\cdot 193^{3} + 28\cdot 193^{4} +O\left(193^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,5)(4,7)(6,8)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$
$2$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.