Properties

Label 2.2e8_7.4t3.11
Dimension 2
Group $D_4$
Conductor $ 2^{8} \cdot 7 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1792= 2^{8} \cdot 7 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{6} + 26 x^{4} - 16 x^{2} + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 23 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 1 + 16\cdot 23 + 12\cdot 23^{2} + 3\cdot 23^{3} + 18\cdot 23^{4} + 16\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 2 + 14\cdot 23 + 3\cdot 23^{2} + 20\cdot 23^{3} + 15\cdot 23^{4} + 12\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 4 + 11\cdot 23 + 7\cdot 23^{2} + 3\cdot 23^{3} + 11\cdot 23^{4} + 10\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 11 + 21\cdot 23 + 7\cdot 23^{2} + 23^{3} + 5\cdot 23^{4} + 6\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 12 + 23 + 15\cdot 23^{2} + 21\cdot 23^{3} + 17\cdot 23^{4} + 16\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 19 + 11\cdot 23 + 15\cdot 23^{2} + 19\cdot 23^{3} + 11\cdot 23^{4} + 12\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 21 + 8\cdot 23 + 19\cdot 23^{2} + 2\cdot 23^{3} + 7\cdot 23^{4} + 10\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 22 + 6\cdot 23 + 10\cdot 23^{2} + 19\cdot 23^{3} + 4\cdot 23^{4} + 6\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3,8,6)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $0$
$2$ $4$ $(1,3,8,6)(2,5,7,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.